
AD-A241 760

NAVAL POSTGRADUATE SCHOOL
Monterey, California

o r i-

o. °"1

SID STATES

T,"R AD'01%

THESIS

THE IMPLEMENTATION OF FORM-BASED INTERFACE
FOR

RELATIONAL DATABASE

by

Partoyo, Major Indonesian Army

December, 1990

Thesis Advisor: Thomas Wu

Approved for public release; distribution is unlimited.

91-13894!/IiI~I'71,il~i//I~91Ji 10 23 01o 8

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.
2b. DECLASSIFICATION/DOWNGRAEING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OF-FICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (Ifapplicable) Naval Postgraduate School

37

6c ADDRESS (City, State, andZIP Code) 7b ADDRESS (City, State, andZIPCode)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ba NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PrOgr4am t ie ent NG Project NC Id5' N vvor Unit Acce"won

N,~mbe,

11 TITLE (Include Security Classification)

The Implementation of Form-Based Interface for Relational Database

12 PERSONAL AUTHOR(S) PARTOYO

13a TYPE Of REPORT 13b TIME COVERED 14 DATE OF REPORT (year, month, day) 15 PAGE COUNT
Master's Thesis From To 1990 December 19 119
16 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do nut reflect the official policy or position of the Department of DelenFe or the U.S.
Government.

17 COSATI CODES 18 SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD I GROUP SUBGROUP Form-Based interface, DBMS, ESIS, Form Designer, Pushbutton.

19 ABSTRACT (continue on reverse if necessary and identify by block number)

Currently the problem with relational DBMSs is a lack of user-friendly interface. Relational

query languages such as SQL and QUEL are not ideal languages for end-users. The forms

approach is considered the most natural interface between end-user and database. Several

systems based on the forms concept have been designed and implemented. This thesis studies

the effectiveness of a form-based visual interface. To evaluate the development process of the

form-based applications, this thesis includes the simple implementation of form-based

interface using the Form Designer of Superbase-4.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCIASSIFIEUNONMITiO 13 AS esPOFI 13ODTIC USIRS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22c OFFICE SYMBOL
Prof.Thomas Wu (408) 646-3391 CS/WQ

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

Approved for public release; distribution is unlimited.

THE IMPLEMENTATION OF FORM-BASED INTERFACE
FOR RELATIONAL DATABASE

by

Partoyo
Major, Indonesian Army

B.S., Indonesian Military Acadeny, 1973

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPI'TER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
1990

Author: _ _ _ _ _ _ _b _ _ __1990

..Partoyo

Approved by:
Thomas 1G, Thesis Advisor

Rachel Griffin, Second Reader

Robert B. McGhee, Chairman
Department of Computer Science

ii

ABSTRACT

Currently the problem with relational DBMSs is a lack of user-friendly

interfaces. Relational query languages such as SQL and QUEL are not ideal

languages for end-users. The forms approach is considered the most natural interface

between end-user and database. Several systems based on the forms rct-T Ir,,

been designed and implemented. This thesis studies the effectiveness of a form-based

visual interface. To evaluate the development process of the form-based applications,

this thesis includes the simple implementation of form-based interface using the

Form Designer of Superbase-4.

L7
• .is t I. r' I. a. t I. L _._

1181 I

7W

TABLE OF CONTENTS

I. INTRODUCTION .. 1

A. MOTIVATION ... 1

B. THESIS OVERVIEW 2

II. BACKGROUND .. 4

A. RELATIONAL DATABASE 4

1. Relational Data Structure 4

a. Terminology 6

b. Keys of Relation 6

2. Relational Algebra 7

a. Traditional Operators 7

b. Special Relational Operators 8

3. SQL A Relational Database Language 10

a. SQL Projections 11

b. SQL Selections 11

c. Joining with SQL 11

d. Nested Queries 12

4. The Problems of SQL 13

B. MICROSOFT WINDOWS GRAPHICAL ENVIRONMENT 14

1. Graphical User Interface 15

2. Hardware Independence 15

3. Dynamic Data Exchange 16

C. SUPERBASE-4 ... 16

1. Getting Started with Superbase-4 17

a. The Superbase-4 Work Area 17

iv

b. The Superbase-4 Menus 17

c. The Browsing Controls 19

2. Form Designer 19

a. The Form Designer Menus 19

b. The Toolbox 20

c. Placing Objects on The Form 21

d. Transaction Lines 22

e. Commands and Controls 22

3. Query and Report 23

a. Queries 23'

b. Reports 25

4. Data Management Language (DML) 26

a. Variables 26

b. Functions 27

c. Operators 27

d. Running a Program 28

III. IMPLEMENTATION ... 29

A. THE GOAL OF IMPLEMENTATION 29

B. THE EDUCATIONAL SCHEDULING INFORMATION SYSTEM

(ESIS) .. 29

1. The Purpose of The System 29

2. The Database Structure 29

a. Faculty 29

b. Course .. 30

c. Department 30

3. The Menu Structure 33

v

4. Defining The Files 34

5. Designing The Forms 35

a. The Main Menu Form 35

b. The Faculty Menu Forms 36

c. The Course Menu Forms 40

d. The Offering Menu Form 42

e. The Department Menu Forms 43

f. The Update Menu Forms 45

g. The Report Menu 47

h. The Others Menu 47

6. Coding The DML Programs 47

IV. EVALUATION 52

A. FORM-ORIENTED DATABASE DESIGN 52

1. E/R Diagram-Relational-Forms Method 52

2. Forms-Relational Method 54

B. THE RELATIONAL CATEGORY OF SUPERBASE-4 55

C. THE ADVANTAGES AND DISADVANTAGES OF USING FORM-

DESIGNER .. 56

1. Advantages 57

a. Easy to Use 57

b. Easy to Modify 58

c. Self-Contained Command 59

2. Disadvantages 59

a. Difficult to Maintain 59

b. The Message Dialog 61

c. The Transaction Lines 62

vi

V. CONCLUSION... 64

APPENDIX A RELATIONAL DATABASE SCHEMA........................ 66

APPENDIX B DML SOURCE CODE LISTING............................ 67

LIST OF REFERENCES... 103

INITIAL DISTRIBUTION LIST..................................... 105

vii

LIST OF FIGURES

1. Figure 2.1 Faculty, Course and offeringRelations...5

2. Figure 2.2 Projection of FACULTY Relation 9

3. Figure 2.3 Selection of FACULTY Relation 9

4. Figure 2.4 Natural Join of FACULTY and OFFERING

Relations 10

5. Figure 2.5 Typical Window 15

6. Figure 2.6 Superbase-4 Work Area 17

7. Figure 2.7 The Superbase-4 Menus 18

8. Figure 2.8 The Browsing Controls 19

9. Figure 2.9 The Form Designer Menus 20

10. Figure 2.10 The Form Designer Toolbox 20

11. Figure 2.11 The Query Definition Dialog 24

12. Figure 2.12 The Example Report Form 25

13. Figure 3.1 The Entity Relation Diagram 32

14. Figure 3.2 The Menu Structure 33

15. Figure 3.3 The Main Menu 36

16. Figure 3.4 The Faculty General Information Form 38

17. Figure 3.5 The Course Assignment Form 39

18. Figure 3.6 The Publication Form 40

19. Figure 3.7 The Course General Information Form 41

20. Figure 3.8 The Faculty Assignment Form 42

21. Figure 3.9 The Offering Form 43

22. Figure 3.10 The Department General Information Form.44

viii

23. Figu~re 3.11 The Department Faculty Form44

24. Figure 3.12 The Modify Menu Form..................... 46

25. Figure 3.13 The Insert Menu Form..................... 46

ix

LIST OF TABLES

Table 3.1 THE ESIS PROGRAMS............................ 48

ACKNOWLEDGEMENTS

I would like to express my gratitude to my thesis advisor, Professor Thomas Wu and

to my second reader LCDR. Rachel Griffin, for their enthusiastic guidance and support.

Without many hours of counseling and endless supply of ideas they provided, this thesis

could not have been completed.

I would also like to express my thanks to my parents, my wife Parisah, my children

Ari, Nia, Novi and Puput, for their understanding, and encouragement, and for the sacrifice

they have made during my study in Naval Postgraduate School.

xi

I. INTRODUCTION

A. MOTIVATION

Database technology is having a major impact on the use of computers and is playing

a critical role in the deveiopment of information systems today. There are several reasons

for this.

First, a database can store large volumes of corporate operational data. Second, a

database can be queried on an ad hoc basis, making it the foundation for decision-support

systems(DSS). Data stored in a database can be readily accessed and processed. Third, a

database can be implemented on computers of all sizes, making it feasible for almost any

business or organization.

A database can be generated and maintained either by a group of applications programs

or by a database management system (DBMS). The main criteria used to classify a DBMS

is the data model on which the DBMS is based. Those data models are: 1) relational, 2)

network and 3) hierarchical.

In recent years, relational systems have become the prevalent database management

systems. They are based on a solid mathematical foundation and provide better query

languages than do network and hierarchical systems.

Although relational query languages such as SQL and QUEL are better languages than

those for network and hierarchical systems, they are still not ideal languages for end-users.

Desirable characteristics for a database development tool include reusability, modifiability,

and extensibility. The development language should be powerful enough to encode complex

1I

ideas and relationships with small amounts of code. Superbase-4 is a language that meets

these characteristics.

Superbase-4 is a comprehensive, general purpose relational database management system

designed to operate in the Microsoft Windows graphical environment [Ref. 7:p. 1-1]. As a

Windows application, Superbase-4 may be executed simultaneously with Windows

graphical and business applications, and can exchange data with them. Superbase-4 can be

driven either by mouse or by keyboard.

The primary goal of this thesis is to study the effectiveness of a form-based visual

interface to databases using the Form Designer of Superbase-4. Form Designer is the

element of Superbase-4 that provides facilities for creating a form. A form is the user's

application view of data. To achieve the goal we include a simple implementation of an

Educational Scheduling Information System (ESIS) using Superbase-4. This system produces

information about faculty members and the courses that are assigned to them. Underlying

the system is a relational database with 5 relations: FACULTY, COURSE, DEPARTMENT,

PUBLICATIONS and OFFERING.

B. THESIS OVERVIEW

Chapter II will present some background information for the thesis, beginning with a

discussion of relational databases. Further discussions will address relational algebra and the

problems of the relational approach. Next we will provide an overview of the Microsoft

Windows Operating Environment, including Window's Dynamic Data Exchange (DDE)

which allows applications to communicate and exchange information with other Window's

applications. Lastly, we will describe Superbase-4 which operates under the Microsoft

Windows graphical environment.

2

Chapter I explains the design goals of implementation, the Educational Scheduling

Database structure and the development of form-based user interfaces.

Chapter IV evaluates the application development process that uses a form-based

approach. The chapter addresses form-oriented database design, the relational category of

Superbase-4 and the evaluation of the Form Designer. Chapter V will present conclusions.

3

HL BACKGROUND

A. RELATIONAL DATABASE

As stated in Chapter I, the majority of present-day databases are based on the relational

approach. The relational model was first proposed by Dr. E. F. Codd (1970). Due to the

rapid improvement of database technology, users with little computer experience and even

less database experience must frequently interact with an organizational database.

One problem with current systems is a lack of user-friendly interfaces. Relational query

languages such as SQL and QUEL are not ideal languages for end-users. This section will

show some problems of SQL. We will demonstrate the need for a visual database interface

with query facilities for accessing databases that are easy to learn and use.

1. Relational Data Structure

To explain the relational data structure, we will provide a simple example of a

relational database. Figure 2.1 shows a relation of data that is organized into three tables:

FACULTY, COURSE, and OFFERING. The FACULTY table contains a faculty

identification, a faculty last name, a faculty first name, a faculty SSN and a faculty phone

number. The COURSE table contains a course code, a course name and the credit hours for

the course. The OFFERING table contains a course code, a section number, a quarter and

year when the course is offered and faculty identification of the instructor.

4

F_ID LNAME FNAME SSN PHONE

F01 Smith John 123456789 123-4567

F02 Shelly Paulin 222333444 321-1234

F03 Correl William 999888777 333-444

(a) FACULTY Relation

F_ID CNAME CREDIT

CS2970 ADA Programming 4.0

CS3320 Intro to Database 3.5

CS3502 Computer Network 4.0

CS3310 A.I 4.0

(b) COURSE Relation

C_ID SNUM QUARTER YEAR INSTR

CS2970 1 Summer 90 F01

CS2970 2 Summer 90 F02

CS3505 1 Spring 89 F03

CS3320 1 Summer 90 F02

CS3320 2 Summer 90 F01

CS3310 1 Winter 89 F03

(c) OFFERING Relation

Figure 2.1 FACULTY, COURSE and OFFERING Relations

5

a. Terminology

The relational database model is based on the concept that data is organized and

stored in a two dimensional table called a relation. Each row in the table represents a record

and is called a tuple. Each column represents a field and is called an attribute. The entire

table is roughly equivalent to a file. Certain restrictions are imposed on relations. First,

attributes are single-valued; neither repeating groups nor arrays are allowed. Second, entries

in any column are all of the same kind. Third, each attribute has a unique name, and

attribute positions are insignificant. Finally, no two tuples in a relation may be identical.

b. Keys of Relation

The key is the attribute or set of attributes that uniquely identifies tuples in a

relation [Ref. 2:p 1391. From Figure 2.1 the FID is the key of the FACULTY relation. Its

unique values distinguish each tuple within the relation.

A key may be the composition of more than one attribute. Such a key is referred

to as a composite key. For example, in the relation OFFERING in Figure 2.1, the

combination of the attributes CCODE, SNUM, QUARTER and YEAR serves as the

composite key.

It is possible for a relation to have more than one key. In such a case we would

say that the relation has multiple candidate keys. We would choose one of those candidate

keys to be the primary key, and the others would be alternate keys. In the FACULTY

relation FJID and SSN are candidate keys. FID is the primary key and SSN is the alternate

key.

When an attribute in one relation is a primary key for another relation, the

attribute is called a foreign key. For example in Figure 2.1 within OFFERING relation,

6

attribute INSTR is a foreign key, because attribute INSTR is the primary key of the

FACULTY relation. A foreign key value represents a reference to the tuple containing the

matching primary key value [Ref. 3:p. 282].

2. Relational Algebra

The relational algebra is a collection of operations that are used to manipulate

relations [Ref 1.-p. 1481. These operations are used to select tuples from one or more

relations to achieve a desired result. The result of each operation is a new relation, which

can be further manipulated by the relational algebra operations. Relational algebra is hard

to use because it is procedural. That is, when using relational algebra we must know not

only what we want, but also how to get it [Ref. 2:p. 3061.

The relational algebra operations are usually divided into two groups of operators:

traditional operators and special relational operators.

a. Traditional Operators

(1) Union. The union of two relations is formed by combining two tuples

forming one relation with those of a second relation to produce a third relation. Duplicate

tuples are eliminated. For this operation to make sense, the relations must be union

compatible. This means that each relation must have the same number of attributes and that

the attributes in corresponding columns must come from the same domain. For example, if

relation A is the set of faculty members from the computer science department, and relation

B is the set ef faculty members who teach CS2970, then A UNION B would be relation C,

the set of faculty members from computer science department or faculty members who teach

CS2970 or both.

7

(2) Difference. When relation C contains tuples that occur in relation A but

not in relation B, and the tuples that occur in relation B but not in relation A, then relation

C is said to be the difference of relation A and B. Using the example in (1) above, then

relation C will contain the faculty members from the department of computer science who

are not teaching CS2970.

(3) Intersection. If relation C contains tuples that are in relations A and B,

then relation C is called the intersection of relation A and relation B. The intersection of

relations A and B will contain the faculty members who teach CS2970.

(4) Cartesian Product. Relation C is said to be the cartesian product of

relation A and relation B if every tuple in C is a concatenation of each tuple in relation A

with every tuple in relation B. Suppose relational A has m tuples and B has n tuples, then

relational C will have m x n tuples.

b. Special Relational Operators

(1) Projection. Projection is an operation that selects specified attributes

from a relation [Ref. 2:p. 313]. The result of the projection is a new relation that has the

selected attributes. Thus projection takes a vertical subset (columns) of a relation. Any

duplicate tuples within the attributes selected are eliminated. Projection can also be used to

change the order of attributes in a relation. Figure 2.2 shows the projection of the

FACULTY relation on the last name and phone number attributes.

8

LNAME PHONE

Smith 123-4567

Shelly 321-7654

Correl 333-4444

Figure 2.2 Projection of FACULTY Relation

(2) Selection. The selection operator take a horizontal subset (row) of a

given relation. A tuple may be extracted from the relation by specifying the relation name

followed by keyword WHERE, followed by a condition involving attributes. Figure 2.3

shows the selection of relation FACULTY WHERE Lname = "Smith".

IF_ID LNAME FNAME SSN PHONE

FOl Smith John 123456789 123-4567

Figure 2.3 Selection of FACULTY Relation

(3) Join. The join operation is a combination of the product, selection and

projection operations. The join between two relations A and B, operates in three steps. First,

take the product of A times B, then do a selection to eliminate tuples that do not meet the

criteria of selection. Finally remove duplicate attributes with projection. This is called a

natural join. If duplicate attributes are not removed it is called an equi-join. The join

operation is important for any relational database with more than a single relation because

it allows the combination of related tuples from two relations into a single tuple. Figure 2.4

shows the natural join of the FACULTY and OFFERING relations.

9

FID LNAME FNAME ... CID SNU QRTR YR
M

F01 Smith John ... CS2970 1 Summer 90

F01 Smith John CS3320 2 Summer 90

F02 Shelly Paulin CS2970 2 Summer 90

F02 Shelly Paulin ... CS3320 1 Winter 90

F03 Correl Paulin ... CS3505 1 Spring 89

F03 Correl Paulin ... CS3310 2 Winter 89

Figure 2.4 Natural Join of FACULTY and OFFERING Relations

3. SQL A Relational Database Language

Originally, SQL was called SEQUEL (Structured English Query Language) and was

designed and implemented at IBM as the interface for an experimental relational database

system called SYSTEM R.[Ref. 1.:p. 1751. SQL is a non-procedural language or declarative

language. In such a language, we construct a query by specifying what data is to be

retrieved rather than specifying how to retrieve the data. The terms, tablerow, and column

are used to represent relation, tuple and attribute, respectively. SQL can be used

interactively as a query language or it may be embedded in application programs.

10

a. SQL Projections

To form a projection with SQL, we list the columns we want to see in a specific

format. For example, the projection FACULTY(F ID,LNAME,PHONE) is created by

specifying:

SELECT FID,LNAME,PHONE

FROM FACULTY

b. SQL Selections

The relational algebra selection operator is specified in SQL form as SELECT-

FROM-WHERE structure, and this is the fundamental structure of SQL statements. Suppose

we want to retrieve all instructors who teach CS2970, then the query would be:

SELECT INSTR

FROM OFFERING

WHERE CID = "CS2970"

c. Joining with SQL

To produce the name of instructors who teach CS2970, we need to join the

FACULTY table and the OFFERING table. It can be done by the following statements:

SELECT FACULTY.LNAME,FACULTY.PHONE

FROM FACULTY,OFFERING

WHERE FACULTY.FID = OFFERING.INSTR AND

OFFERING.CID = "CS2970"

11

d. Nested Queries

Some queries require that existing values in the database be fetched and then

used in a comparison condition. For example, we want to find instructors who teach the

course with credit hours more than 3.0. The query would be:

SELECT LNAME,PHONE

FROM FACULTY

WHERE FACULTY.F_ID IN (

SELECT INSTR

FROM OFFERING ,COURSE

WHERE OFFERING.CID = COURSE.CID

AND

COURSE.CREDIT > 3.0)

The first nested query selects the faculty ID's of those who teach the course with

credit hours more than 3.0. In the outer query, we select a FACULTY tuple if F_1D value

of that tuple is in the result of the first nested query. We also may write this query using

the CONTAINS operator as follows:

SELECT LNAME,PHONE

FROM FACULTY

WHERE ((SELECT CID

FROM OFFERING

WHERE F_ID = INSTR)

CONTAINS(

SELECT C-I)

12

FROM COURSE

WHERE CREDIT > 3.0))

Another way to write a nested query is by using the EXISTS tunction. For

example we would like to list all faculty members who are not teaching any courses in

summer 1990.

SELECT LNAME

FROM FACULTY

WHERE NOT EXISTS(

SELECT *

FROM OFFERING

WHERE FID = INSTR AND

QUARTER = "SUMMER" AND

YEAR = "90")

The correlated nested query retrieves all OFFERING tuples for summer 90 and

matches them with the current tuple of the FACULTY relation. If none exists then the

current FACULTY tuple is selected and LNAME is retrieved.

4. The Problems of SQL

In light of the previous examples we can see that SQL is not easy to use. This is

especially true for non-experienced users. The reasons are:

a. SQL has no easy-to-use facility for saving and reusing temporary results of

queries. It forces one to nest sub-queries to accomplish passing of results. Nested queries

are very complicated structures as we saw in the previous examples. They are not easy to

use even for experienced users.

13

b. In many instances the users must specify how to get the result rather than stating

what the desired result is. This is in contradiction with the philosophy of SQL as a non

procedural based language.

c. SQL does not address the notion of foreign keys and the related notion of

referential integrity. it is possible to leave a database in a, inconsistent state by using

foreign key values that do not obey the referential constraint. Referential constraint means

that values of a given foreign key must match values of the corresponding primary key [Ref.

3:p. 2821. For example, from Figure 2.1 we know that INSTR is foreign key in the

OFFERING relation, because INSTR is the primary key of the FACULTY relation. Suppose

we update the faculty ID of John Smith from F01 to F04 in the FACULTY relation. SQL

will not automatically update the value of INSTR for John Smith in the OFFERING

relation. Now the FACULTY relation and the OFFERING relation are in an inconsistent

state.

d. SQL does not show the meaningful relationships among tables to the user.

Furthermore, joins that semantically make no sense are still allowed and lead to incorrect

results.

B. MICROSOFT WINDOWS GRAPHICAL ENVIRONMENT

Windowing interfaces were started by the XEROX Palo Alto Research Center (PARC)

in the mid-1970's. They were popularized by Apple Computer, and later by Microsoft and

other developers. The Windows environment offers numerous advantages such as hardware

independence and dynamic data exchange as well as a user-friendly interface and an

intuitive graphical interface.

14

1. Graphical User Interface

The Windows interface is based on graphical objects such as menus, dialog boxes

and icons. In the Windows environment menus and icons have replaced the cryptic DOS

command line syntax. User may interact with their programs by using a mouse or other

pointing device instead of a keyboard. Figure 2.5 shows the typical Window format.

Windows also provides the Graphics Device Interface (GDI), which contains routines

for drawing menus, windows, dialog-boxes and many other graphic objects.

=Notepad - (untitled)
Eifc Edit Search Help

Figure 2.5 Typical Window

2. Hardware Independence

The Windows environment is hardware independent.This means that if our program

can be run under Windows on a particular computer, then it will also run on any computer

that Windows supports. Screen layouts will work on any monitor, and printer output may

be obtained on any brand of printer. This capability wil! relieve the programmer of the

burden of writing code to support each peripheral device available.

15

3. Dynamic Data Exchange (DDE)

In the Microsoft Windows environment, different applications may be linked together

so data can be easily transferred between them automatically. Information can be passed

without the user explicitly asking for it.

Programs using DDE must follow the protocol established by Windows to pass the

information. Normally, one application does the asking, and another responds. The asking

application is often referred to as the client program, and the responding application is

called the server.

Many applications require a more sustained relationship between programs, in which

both data and commands are passed repetitively and for longer periods. This kind of DDE

relationship is called a conversation.

C. SUPERBASE-4

One of the database managers that operates under the Microsoft Windows graphical

environment is Superbase-4. As a Windows application, Superbase-4 may be executed

simultaneously with other Windows applications and can exchange data with them.

Superbasc -4 includes facilities for the interactive development of form applications using

its Form Designer and provides an interface to the relational database system. A form is the

user's application view of data which consist of a background of graphic objects such as

areas or lines, onto which fields from one or more existing database file may be placed

[Ref. 8:p. 1-1]. We may also include calculation formulas and commands on a form,

allowing us to construct a complete application with no programming.

16

1. Getting Started with Superbase-4

To start working with Superbase-4 we must load Microsoft Windows. Then the

Superbase-4 program file SB4W.EXE may be run. When this program is executed,

Superbase-4 presents a Work Area with pull-down menus at the top and the browsing

control at the bottom. (See Figure 2.6).

-1 Superbase - C,%SUPDASMTIIESIS"
File Edit Record Process Set Utilities DML Hielp

Ready NUM INS I

11

Figure 2.6 Superbase-4 Work Area

a. The Superbase-4 Work Area

Superbase-4 uses the Work Area to show data, either with or without a form.

With a form, data from several files can be shown at once. Without a form, Superbase-4

shows just the records in the current file, as well as the results of some other operations.

b. The Superbase-4 Menus

Superbase-4 provides 7 menus: File, Edit, Record, Process, Set, Utilities and

DML. For each menu there are some submenus (Figure 2.7).

17

Almost all operations can be accessed from pull-down menus that allow one to

create a new file, modify an existing file, create a new index for an existing file, create a

query, write a new program, execute an existing program and perform other tasks.

FRe Edi Record
New CmivjUv New

12cisSag+D Save
On Cp Cl+ r Duplicate
Mody. F3 Flo*___Mira___

Save CqqYLk* Next Ikjlemid
Remove Pat Lin re io Eteijid

Index New -
lndez Open..- F4
lodesRemove~

Pam Open F9P Dfreeamry List
Form Close T"d
Eit Swus Fie

Consunicatiom.-

Delete.
Qo - hFS Table View Heroine-
Quey pen F6 Ps~e View COW v

Query %we As.- Record View

Updide Opea FuI"Seet w 7 Retwd Macro
Update Save As -ix flayMarco

Rmove. ShowFiedName

pitSytm Optm..e - ME
Import - Paaff Setup.. Ccmmuid. Alt#F1

S- Numnber Format - New
Mal Es -at Foral - Open -

Reoszooke - &a AI*FZ
Save
Save As..
Remove.-

Figure 2.7 The Superbase-4 Menus

18

c. The Browsing Controls

The browsing controls provide a set of tools for instant and intuitive file

management. With the browsing controls users may select next record, previous record, first

record, last record, rewind file, fast forward, pause or stop by clicking a mouse or pressing

the appropriate key. This feature is easy to use for non-experienced users. Figure 2.8 shows

the browsing controls.

Figure 2.8 The Browsing Controls

2. Form Designer

The Form Designer is a design system for producing input and browsing screens,

forms for printing, and reports. [Ref. 8 p: 1-2]. The Form Designer program is called

SBFD4W.EXE. It can be executed from the Windows Desktop or from the command line

like any other Windows applications. When the program is executed, Superbase-4 presents

the Form Designer menus.

a. The Form Designer Menus

The Form Designer menus contain all commands for controlling the system.

There are 5 menus: File, Edit, Page, Define and Report Generator, and each menu has sub

menus (Figure 2.9). Performing a special operation from this menu is achieved in the same

way as in the Superbase-4 Menus.

19

Now.. - UID Al -E New

Save Co~y CaI~hu Save AS..
SaveAs - PAI huk Reoe -
Remove. - Cho CM -t)d Scow ..

SBFOpUL. F? Taub F3 Clewf..
gH FeOce SIPWW 14 Ezme -

Directoy Lirt mie~rAwL F4 Nest
Sf- PCloouiwm At# Ft wIx

Fptw FS ____________

Delia* Report Generator
Fat- I~ IIf

SBM~Lh- Seet .

Ddo Entry Orde -of

Figure 2.9 The Form Designer Menus

b. The Toolbox

The Form Designer toolbox is the most important resource for the application

designer. The Form Designer toolbox, provides easy and continuous access to the object

types and editing choices needed by the application designer. Objects can be fields of

opened files, text, images, lines, boxes or areas. Figure 2.10 shows the Form Designer

toolbox.

Figure 2.10 The Form Designer Toolbox

20

The left-hand part of the toolbox shows the graphical, data and logical object

types. Next to them are the tools for moving and sizing objects. In the center of the toolbox

are the color selection tools and groups of tools for selecting pen and paper, rounded comers

and borders. Next to these are tools for display only, text style, read only, currency

calculation type, image scaling, and field justification.

The right hand part of the toolbox includes palettes for color, area pattern, and

line pattern.

c. Placing Objects on The Form

The order in which types of objects are placed on a form is largely a matter of

individual preference. The user simply places the object at the location desired using a

mouse. Once an object is on the form, it may easily be sized or moved using the Form

Designer toolbox.

By placing a field on a form we may enter data into the database as well as

retrieve it. Fields can be selected from any existing database file, and positioned anywhere

on the form. When a form consists of fields from more than one file we have to join the

files using the Define SB Link command. Each pair of files to be linked must have a pair

of indexed fields that contain matching data.

A field may be designated as read only to protect it from being changed, or

display only to stop it from being printed. When fields will not fit on a one-page form, then

it is possible to build a multi-page form by using the Page menu. The Page menu includes

commands for creating a new page, opening and saving pages, clearing and erasing pages,

and for switching between pages.

21

d. Transaction Lines

Some applications include one-to-many relationships between records in different

files. In a form, we can define a group of fields as the "many" part of such a relationship,

using the Transaction Line command. Typically, each transaction is a row of fields from a

single record belonging to the file at the "many" part of a one-to-many relationship.

We can define the number of rows and the number of columns that will appear

on the form by inserting the number in the transaction lines box of the Transaction Lines

Dialog.

For a transaction to work, a link between a field in the master file and a field

in the transaction line must be established using the Link command on the Set menu.

e. Commands and Controls

The Form Designer includes facilities for adding commands, pushbuttons, check

boxes, and radio buttons to forms.

(1) A command is one or more DML statements entered as a single line.

Commands are executed when the insertion point passes through them. A command may

be used for validation, immediately after the field to which it relates is entered, or to load

a DML program.

(2) A pushbutton is a graphic object that executes a user-specified command

when the user clicks it. Visually a pushbutton is a rectangle with rounded comers,

containing a label that indicates its purpose. Pushbuttons may be used for many purposes,

such as to trigger complex processing or to switch to another form.

(3) The other kinds of form control, radio buttons and check boxes, are

attached tc, fields or variable calculations. Their purposes vary.

22

3. Query and Report

a. Queries

The Query command is a powerful and versatile tool for data selection. It has

five main areas of application:

(1) Creating complex filters. A filter is a set of conditions for the record to

be selected. It is very common for applications to retrieve the same set of records over and

over again using the same or similar criteria. For this kind of application, Query is the best

tool, because we can create a complex filter for the query, save the query on the disk and

execute it whenever needed.

(2) Multi-file applications. By setting up a relational link in the Query Filter,

we can select several files at the same time.

(3) Reporting. The report features available in Query provide additional

information about the results of a search, such as record counts or field totals.

(4) Sorting. Query output can be sorted into any order, either ascending or

descending. We can also specify several levels of sorting, using a different field for each

level.

(5) Output redirection. The output from a query can be directed to one of

four possible destinations: the screen, the printer, a text file, or a new database file.

The Query command is activated by selecting the Query Open command from

the Process menu. After selecting the desired query from the list, Superbase-4 presents the

Query Definition Dialog as illustrated in Figure 2.11.

23

Query Definilion

Title E] Date [l-Z Page

Se.e.. 0i& F

p8 s:r 8 S.o F ie

I
Figure 2.11 The Query Definition Dialog

The Query Definition dialog has three parts, at the top is the Title Definition,

below is the Query Command Panel, and at the bottom left are the selected destinations for

the output from the query.

The four lines of the Query Command Panel do most of the work of the Query

command. Each line defines one of the elements of a query: output fields, report features,

filter conditions and sorting order. To run the query click OK button or press ENTER key.

24

b. Reoorts

In SuperbaseA4 reporting is considered to be an extension of the program's query

facilities. Explanatory text, such as headings and footings, is combined with functions such

as subtotaling and mean calculation to produce more informative output (Figure 2.12).

HEADINGE ~Departaest of Computer Sciemce : Comm* Azit..ent

r--BEFORE GROUP cummtitfe fecouge

[EFORE GROUP qmtrofru

SELECT ututroiia

KFTER GROUP

7 AER GROUP

Figure 2.12 The Example Report Form

25

The Form Designer provides a set of commands for generaTing reports. When a

report is saved, the Form Designer generates a DML program and stores it on disk. This

program may be edited from the DML command menu or from the Form Designer.

4. Data Management Language (DML)

DML is a facility for technical users to accomplish complex queries such as one-to-

many forms browsing or multi-column label printing. DML is based on the programming

language Basic. It includes most of the standard Basic commands and functions, but

supplements them with a large number of commands and functions that are specific to

database management There are two modes of operation: direct mode and program mode.

In direct mode, DML executes instructions as soon as we type them. To choose

direct mode, select the Command option on the File menu.

In program mode, DML does not execute commands as we enter them. Instead

commands are stored in memory and executed only when the program is run. Superbase-4's

Program Editor provides facilities for the development of programs in DML code. A

program line can be up to 255 characters.

a. Variables

There are three types of variables in DML: string variables, numeric variables,

and arrays. String variables are used to hold ASCII characters. The maximum length of data

that can be held in a string variable is 4000 characters. A string variable name must end

with the "$" character.

DML's numeric variables hold numbers to 14-figure accuracy. If displayed or

printed, they are shown in the current default numeric format. The default may be changed.

Numeric variables name must end with "%" character.

26

DML supports string and numeric arrays with up to three dimensions. The

maximum number of elements in an array is limited only by the amount of memory

available.

b. Functions

Functions form one of the largest groups of DML keywords. Most of them

perform a calculation on a number or a string, but there are also functions that give

information about some aspects of the system. RECCOUNT for example, returns the number

of records in a file, FREE returns the amount of free memory space.

c. Operators

DML provides three types of operators: arithmetic, relational and string. The

arithmetic operators are addition, subtraction, multiplication, division, exponentiation and

modulo arithmetic. Parentheses can be used to change the order in which the different parts

of an expression are calculated.

Relational operators compare the values of two numbers or two strings, and

return a result which is either true or false. The relational operators are

> greater than

>= greater than or equal to

< less than

<= less than or equal to

<> not equal to

= equal to

LIKE pattern matching operator for string

CONTAINS pattern matching operator for text file

27

d. Running a Program

To run the program already loaded in memory, select Run from the File or DML

menu. If there is no program in memory, Superbase-4 displays the program file open dialog.

We can select the required program and load it into memory for execution.

Programs can also be executed automatically when we run Superbase-4 by

specifying a "start-up" program. To create a start-up program, first we must store the

program in a directory where Superbase-4 will find it: either the start directory or the

directory which is current when Superbase-4 is loaded. Second we must save the program

under the file name START.SBP.

28

M. IMPLEMENTATION

A. THE GOAL OF IMPLEMENTATION

In Chapter I we discussed several facilities of Superbase-4 including the Form Designer.

Using the Form Designer we may develop the form-based application interactively with no

programming. To study the effectiveness of developing the form-based interface, we present

the experience of developing a simple form-based application using Superbase-4.

The goal of the implementation is to show how easy it is to use Superbase-4 to develop

a form-based application. We discuss how the Form Designer, DML and other facilities

have helped us to improve the quality and reduce the quantity of our code.

B. THE EDUCATIONAL SCHEDULING INFORMATION SYSTEM (ESIS)

1. The Purpose of the System

The purpose of the Educational Scheduling Information System is to automate the

scheduling of courses. This system illustrates how a Superbase application can be developed

with a minimum of programming.

2. The Database Structure

We first identify three objects which are needed by the system, Faculty, Course and

Department. Figure 3.1 illustrates the relationship between these objects.

a. Faculty

This object consists of data such as faculty ID, last name, first name, phone,

teaching preference, department code, biography and publication. Publication is a multi-

value attribute. Thus, the Faculty object will be represented by two relations. One will

29

contain general information about a faculty member. The other will contain the publications

associated with the faculty member. The relations have a many-to-many relationship and

total/partial participation. This means that a publication must be associated with a faculty

member but a faculty member is not required to have any publications. The format of the

two relations are

FACULTY(Fac ID. Lastname, Firstname, Phone, Teaching_pref, Dcode, Biography).

PUBLICATION(FacID, Publication, Author, Title, Volume, Number, Year,

Number pages).

b. Course

The Course object consists of data such as course number, course title, course

credits, syllabus and coordinator of the course. The relationship between Course and Faculty

is called Offering. Its attributes are: section number, year, quarter, constraints, number of

students who attend the course at the beginning and at the end of enrollment and SOF. The

relation between Course and Faculty is many-to-many and has total/partial participation.

This means each course must be taught by at least one faculty member and each faculty

member may or may not teach any of the courses. The relation formats are

COURSE(C num Title, Units, Coordinator, Prerequisites, Syllabus)

OFFERING(C num, Section, Ouarter, Year, Instructor, Constraints, Beg cnt, End-cnt,

SOF).

c. Department

The last object of this system is Department. It consists of data such as department

code, department name, chairman and phone number. Two relationships exist between

Department and Faculty, namely WORKON and CHAIRMAN.

30

The WORK_ON relationship is a one-to-many relationship and has total/total

participation. This means that each department must have at least one faculty member who

works in that department, and each faculty member must work only in one department.

The CHAIRMAN relationship is a one-to-one relationship and has total/partial

participation. This means that each department must have one and only one faculty assigned

as chairman and not all faculty members must be chairmen.

The CHAIRMAN relationship is represented by placing a CHAIRMAN attribute

in the Department relation. The WORKON relationship is established by placing the

D_CODE attribute in the Faculty relation. The relation format for the Department relation

is

DEPARTMENT(D code,_name, Chairman, Phone).

31

Oode DOnww ID~~onS)

C~oordinator CDRS FI-2.LY Phone

T

(S'llabusBioraph

Scin Quarter Year SO erol E-erroll Pi.bIicati

Figure 3.1 The Entity Relation Diagram

32

3. The Menu Structure

Menu selections are attractive because they can eliminate training and memorization

of complex command sequences [Ref. 9:p. 86]. When the menu items are written using

familiar terminology, users can select an item easily.

For our proposed system, we organize the menu selections in a hierarchical structure.

[See Figure 3.2]. The Main menu is located at the top level. There are seven option menus

that can be selected from the Main menu: Faculty, Course, Offering, Department, Update,

Report and Others.

General General General General Insert By HelpW o info '-Into Inf Faulty

Course-, mney eant dodify By Exit
Astgnmeut -Asignment F Course
Publication

Figure 3.2 The Menu Structure

The Faculty menu provides three options: display the general information of the faculty

member, display the course assignment and display the publications of the faculty member.

The Course menu provides two options: display the general information of the course and

display the faculty assignment. The Offering menu consists of one option, which is display

33

the general information of the offering relation. The Department menu provides two options:

display the general information of department and display the department of a given faculty

member. The Update menu consists of two submenus: insert a new record and modify an

existing record. There are five options that can be selected for each submenu according to

the file to be updated. The Report menu contains two options: report by faculty member and

report by course. The Others menu contains two options: help and exit.

4. Defining The Files

From the previous discussion we know that to develop the proposed system we need

five relations, namely Faculty, Publication, Course, Offering and Department. Now, let us

discuss how to create the files of these relations.

There are several steps required to set up a new file using Superbase-4. First, from the

Superbase-4 Work Area we select New under the File menu and type in a new file name

without any extension. Superbase-4 automatically adds SBF extension when we save the

file. FACULTY, PUBLIC, COURSE, OFFER and DEPART are the names of five files

needed by the system. For these files we may add passwords for protection, but to keep our

application simple, we do not add any passwords.

Second, we define the characteristics of each field and add it to the File Definition.

All attributes of those five files have a text type, because there is no possibility of

performing any computations on those attributes.

To maintain data integrity, we may attach a validation formula to some fields. A

validation formula may be thought of as a rule that regulates what can be entered into the

field. Superbase-4 provides several types of validation such as functions for cross-file

checking, a range limit for imposing an upper and lower limit for numeric fields, and lists

34

of acceptable values for text fields. After we define the characteristics of all the attributes

and add validation formulas to the appropriate fields, the next step is to specify the index

fields. For each file, at least one field must be specified as an index field. We must also

create an index for any field which will be used for relational operations such as a join

operation. For example, for the Faculty file there are three fields assigned as an index:

FACID, LASTNAME and DCODE. These fields are used as relation links between

Faculty file and Publication, Offering, Course or Department files. FACID is a unique

index. The data in this field must not be repeated in any other record. LASTNAME and

D_CODE are duplicate indexes and allow duplicate entries.

5. Designing The Forms

Designing a form to process each menu selection is the most difficult part of

developing the system. Designing a form in the proposed system is more than just placing

text and data on the form. The interface between a form and a set of DML subroutines must

also be constructed because all functions of the ESIS are controlled by the DML program.

To construct the interface, we attached the DML commands to the pushbuttons that are

located on the form.

To put the users at ease and help them sort out the contents of the screen, we used

different colors for the forms of different menus, and we also used different fonts and

different character sizes for menu titles, items and instructions.

a. The Main Menu Form

The Main menu form contains the name of the system and seven pull-down menus,

namely Faculty, Course, Offering, Department, Update, Report and Others (see Figure 3.3).

The system always returns to the Main menu form after completing a process.

35

DEPARTMENT OF COMPUTER SCIENCE

Faculty Courac Oicrimp I)cparlmcnt Update |lcport Others

NAVAL POSTGRADUATE SCHOOL

Educational Scheduling

Information System

Figure 3.3 The Main Menu

b. The Faculty Menu Forms

This group consists of three forms: Faculty General Information, Course

Assignment and Publication forms. The Faculty General Information form provides general

information about faculty members such as: last name, phone number, teaching preference,

biography and list of publications. We use a multi-page form to display all of this

information (Figure 3.4). The transaction line function of Form Designer is used to display

multiple records of the Publication file on a single page. To go from one page to another

page we may click the NEXT PAGE or PREV PAGE pushbuttons. It is possible to find a

specific record from the Faculty file using the SEARCH pushbutton.

36

Faculty General Information

Last Name I~I*cfi~yPhone PboatJkct

Department dLnam~c#d rt

Tech. Pref

!55~!~I ~ S~hI n,

...)

L....s.... N am e: Ia t a.......

Biography

Biography.WUL

..b

3 7.

j List of Publication
Last Name Aa*ioMC..

Publications
..
....

..u.
.. -
.....

..C.

Figure 3 .4 Faculty. General................. IoraI Form..........

The .Course Assignment....... form.. is... deigedt.dspa.te.as.a..o..fcut
memer it th lst f ouresassgnd t.hm o hr.(ire.5. This. f...rm.....lustrates.....

the oe-to-any rlatin beteen te Faulty ile ad th.Coure.fil..Eiht.reords.n.th
Course..........le. can. bediplye.a.oce

38..........

Course Assignments
for

Iastnazncl acuity

Quarter Year Course Sect. Sof Begin End
kq1It -.yw .. I~ u .. of~m ol e~ t

t i. fte- nu cj. u %- ~ ~ efnoo~ua t t

...........~a t~l~ ftI... c i s~ fcsm ~ ta s~
qttorei~&~r~m.Tr~ et4 o.ffii~ atzttt

r~ir.........r. eri ff t n @f~t e ... A l

quutefAI~~~~~e~la.. %':e*fA 0'~reil ftcciii nofn ~ b*~l 5Ca~

.... ~ .~n ... ti eri, .. *

Figure 3.5 The Course Assignment Form

The Publication form is designed to provide information about journals written by

faculty members (Figure 3.6). The information includes the name of the publication, journal

title, authors, volume, number and number of pages. We may use the SEARCH pushbutton

to find a record of Publication file by authors.

39

PUBLICATION

Last Name tsnm~aul

Publication

t . qb c....

Auto.s.......~b~...........

.......

Fiuei.lhePblctonFr

....The...C..rse...Me..u.Forms.

This...... group................. cositofto.or s.CuseGeeal. fomai..om.ndFcut
Assignmentform .e Co rs General.... ...for...acion.. for.poviestheinorm tin.schas
cou..rse..... code,................. co rs tie, crdi,.oodiaor.perqusies an. ylab s. Al.o.ti
informaton is........... dislaedintw.pge.(igre3.).Th.frs .pgediplyscors.cde
course....... ...e.rei,.ordnto .ndprrquste.Th.ecn.pgedspas.h.slabs

..............4 0.

Course Information

Coot dinatorcoun~Icus

Prerequisites

..........

Syllabu of Iam±o

MaM

(a)

Fglaue 37TeCusoeealffrainFr

4 1

The Faculty Assignment form is designed to display the course title and the list of

faculty members who are teaching the course (Figure 3.8). Ten faculty members in the

Faculty file can be displayed at once using the one-to-many replication features of For

Designer.

Instructors for

..... . co r i i -E I

Quarter Instuctor Sec Quarter Instructor Sec

qwtroi sa ik quta . te i instrun a t"61v .

Figure 3.8 The Faculty Assignment Form

d. The Offering Menu Form

The only form for the Offering menu is the Offering General Information form. A

single record in the Offering file is displayed on a single page (Figure 3.9). Five

pushbuttons are available for this form: PREV REC, NEXT REC, SEARCH, PRINT and

MAIN. SEARCH pushbutton can be used to find a special record from the Offering file

using a course code as a key.

42

I Course Offering

Course fpum.160ii

Section pdoiq SOP safe*11r Initial Enrollmentb.ua

Quarter qwxtr.oN1 Year 4ycVtd4 Final Enrollment ect

Instructor

Scheduling. Equipment, e1C. requirements

..I~ * ~

...... Figure:: 3....9 Th OfeigFr

number (~Figure 3.10) The Deatmnfaclyfrmn prvmsifraino h aut

members who work in one department (Figure 3.11).

43

Department General Information

N ame

ChaimantauR~

Phone)oecw

Figure 3.19 The Department General Information Form

Department of Faculty

Name .id ...t : a4 ::: :

Last Name Phone Last Name Phone

igurane.11uI The DearIt metFacuty Foarc

44

The Department General information form is designed to display a single record of

the Department file on a single page. This is simpler than the Department Faculty form

which is designed to display multiple records from the Faculty file in a single page.

SCROLL FWD and SCROLL BWD pushbuttons are available in the Department Faculty

form to enable browsing forward and backward in the Faculty file.

f. The Update Menu Forms

This group consists of updating routines that must be carried out from time to time

in various files. The two submenus provided are for modifying and inserting records. The

form of each submenu contains five pushbuttons with the labels FACULTY, COURSE,

DEPARTMENT, OFFERING and PUBLICATION to indicate the file being updated, and

one pushbutton with the label CANCEL to indicate canceling the update process and

returning to the main menu (Figure 3.12 and Figure 3.13).

Each submenu consists of five forms: the form for Faculty, Course, Department,

Offering and Publication files. For every form there is a pushbutton with the label UNDO.

This pushbutton is used to cancel the update process or the insert process that we have

done. When we select a Modify submenu for a particular file, the dialog box will

automatically be displayed by the REQUEST function of Superbase-4. The dialog box

contains a list of the values of primary keys for all records in the file. To find a record for

modification, we may search from the list and highlight it.

45

UPDATE DATABASE RECORD

FACULTY

COURSE

DEPARTMENT

OFFERING

PtJBUCATION L E1

Figure 3.12 The Modiry Menu Vorm;

INSERT DATABASE RECORD

FACULTY

COURSE

DEPARTME14T

OFFERING

PUBULA1ON D

Figure 3.13 The Insert Menu Form

46

g. The Report Menu

This group consists of two reports that have been predefined for the ESIS: Faculty

Teaching Assignment report and Course Assignment report. The first report is designed to

print all faculty members with their assigned courses. The second report is designed to print

all courses with the list of faculty members who are teaching each course.

To make the reports easy to read, we group the Faculty Teaching Assignment report

by the faculty member's last name and the Course Assignment report by course code. All

of these reports are made using the report facility of the form designer.

h. The Others Menu

This is the last menu of the ESIS. It contains two options: help and exit. The help

option provides assistance to the users by explaining the menu structure of the system and

how to run the system. The exit option is for quitting the system.

6. Coding the DML Programs

As we stated earlier, all functions of the ESIS are controlled by the DML programs.

Once the main program is running, the system retains program control of the user's access

to Superbase's functions and facilities until th(it option is selected from the main menu.

There are a total of twenty three programs in the system (see Table 3.1). Each program

consists of several routines and each routine consists of several DML commands. Each

program controls the execution of one form. The interface between a program and its form

is constructed by attaching the commands to the pushbutton. Each pushbutton on the form

is handled by one routine in the program. When a given program is executed, the related

form will be opened. Only one form can be opened at a time. The Form Designer opens all

47

files that are needed by the form. When we click one of the pushbuttons that are available

on the form, the routine for the selected pushbutton will be executed.

TABLE 3.1 THE ESIS PROGRAMS

Prog.Name Purpose

MAIN.SBP - Clear the Superbase menu system.

- Display Main form with seven pull-down menus.

- Set on the Superbase menu system when Exit option is

selected.

FACGI.SBP - Display the multi-pages Faculty General Information form.

- Handle the NEXT REC, PREV REC, NEXT PAGE, PREV

PAGE, SEARCH, PRINT and MAIN pushbuttons.

FACC_I.SBP - Display the Faculty Course Assignment form.

- Handle the NEXT REC, PREV REC, SEARCH, PRINT and

MAIN pushbuttons.

PUBLIC.SBP - Display the Publication form

- Handle the NEXT REC, PREV REC, SEARCH, PRINT and

MAIN pushbuttons.

48

CRS_G_I.SBP - Display the multi-pages Course General Information form.

- Handle the NEXT REC, PREV REC, SEARCH, PREV

PAGE, SYLLABUS, PRINT and MAIN pushbuttons.

CRSIA.SBP - Display the Course Assignment form.

- Handle the NEXT REC, PREV REC, SEARCH, PRINT and

MAIN pushbuttons.

OFR_G_I.SBP - Display the Offering General Information form.

- Handle the NEXT REC, PREV REC, SEARCH, PRINT and

MAIN pushbuttons.

DEP_G_I.SBP - Display the Department General Information form.

- Handle the NEXT REC, PREV REC, SEARCH, PRINT and

MAIN pushbuttons.

DEP_I_F.SBP - Display the Department Faculty form.

- Handle the NEXT REC, PREV REC, SCROLL FWD,

SCROLL BWD, SEARCH, PRINT and MAIN pushbuttons.

IMAIN.SBP and - IMAIN.SBP displays the Insert submenu form.

U_MAIN.SBP - UMAIN.SBP displays the Modify submenu form.

- Both handles the FACULTY, COURSE,

DEPARTMENT,OFFERING, PUBLICATION and

CANCEL pushbuttons.

49

I_FAC.SBP, - IFAC inserts the FACULTY recor.

I_COURSE.SBP, - ICOURSE inserts the COURSE record.

I_OFFER.SBP, - IOFFER inserts the OFFERING record.

1_PUBLIC.SBP and - IPUBLIC inserts the PUBLICATION record.

IDEPT.SBP - IDEPT inserts the DEPARTMENT record.

- All programs handle the INSERT, UNDO and MAIN

pushbuttons.

U_FAC.SBP, - U_FAC modifies the FACULTY record.

U_COURSE.SBP, - U_COURSE modifies the COURSE record.

U_OFFER.SBP, - UOFFER modifies the OFFERING record.

UPUBLIC.SBP - UPUBLIC modifies the PUBLICATION record.

and - UDEPT modifies the DEPARTMENT record.

U_DEPT.SBP - All programs handle the MODIFY, UNDO and MAIN

pushbuttons.

C_SCHRP.SBP - Prints the faculty teaching assignment report.

- The report is grouped by faculty's last name and quarter.

I_SCHRP.SBP - Prints the course assignment report.

- The report is grouped by Course code and quarter.

50

Two programs have been designed to print the reports. CSCH_RP.SBP is designed

to print the faculty teaching assignment and I_SCH_RP.SBP to print the course assignment.

These programs are automatically generated by the Report Generator of the Form Designer

when we save the report.

From the experience of developing a simple form-based application such as the ESIS,

we found some advantages as well as disadvantages of using the form-based approach. In

the next chapter we will evaluate the application development process using a form-based

approach.

51

IV. EVALUATION

In the previous chapter we described the design of ESIS and discussed how we

employed the features of Superbase-4. Now we will evaluate the application development

process using a form-based approach. We will evaluate two form-oriented methods for

database design, the relational category of Superbase-4, and the advantages and

disadvantages of using the Form Designer.

A. FORM-ORIENTED DATABASE DESIGN

One of the most difficult tasks in database design is properly collecting the relevant

information [Ref. 10:p. 161]. There are two categories of information needed in database

design, information about the processes and information about the data. Database design

requires detailed knowledge not only about the characteristics of the data but also about the

existing and projected processes that operate on the data.

There are two methods that can be used to design a database in a form-oriented

application development: F/R Diagram-Relational-Forms method and Forms-Relational

method.

1. E/R Diagram-Relational-Forms Method

Our implementation uses this method. First we identify the objects the application

needs. An object is the representation of an entity in the user's work environment, such as

a course, faculty or department. We must identify the objects and their structures so that we

may determine what data must be stored in the database. To learn what objects are

52

important to the user and to identify the manner in which those objects are processed, we

must communicate with the end-users.

When all of the objects have been identified, we may determine the relationship

between those objects. Relationships can be one-to-one, one-to-many or many-to-many.

After all relationships have been determined, we may draw an Entity/Relationship diagram

(FIR diagram). An E/R diagram is an abstract database design and an illustration of the

logical structure of a database.

From an E/R diagram, we may then construct a relational database by mapping all

its entities and some relationships into relations. Each entity type is mapped into a base

relation. Each many-to-many relationship and multi-valued attribute are mapped into the

base relation. Let us take an example from the ESIS. This system consist of three objects:

faculty, course and department. The database thus contains three base relations: FACULTY,

COURSE and DEPARTMENT. Since the offering relationship (associates faculty members

and courses) is a many-to-many relationship, then we also have an OFFERING base

relation. Publication is a multi-valued attribute of faculty entity, therefore we can map this

attribute to a PUBLICATION relation.

When the database design has been finished, the last step of this process is form

design. Communication between users and designers is important during the form design

process.

The E/R Diagram-Relational-Forms method gives the user and developer great

flexibility in determining the design of the forms. Users and developers design the forms

they need based on the underlying relational database that is already designed. Unfortunately

this method is time consuming and labor intensive, because we must set up the

53

specifications by interviewing the users. Ambiguities, misunderstanding, and over-

specification or under-specification of an application may occur.

2. Forms-Relational Method

The difference between this method and the previous method is in the way we

capture the essential information for designing the database. Using the E/R Diagram-

Relational-Forms method we capture the information by interviewing the users while in the

Forms-Relational method we capture the information by identifying the forms that the users

already have.

Each form maps into a base relation. For example, in the ESIS we have five forms:

faculty, course, department, offering and publication forms, thus we also have five relations:

FACULTY, COURSE, DEPARTMENT, OFFERING and PUBLICATION. Each form

consist of several data items. These data items are the attributes of the relation.

To determine the relationship between relations, we must identify the common fields

of the associated forms. For example, in the faculty form we have data item CNUM

(CNUM is a field name of the course number). This data item also exists in the course

form, therefore we determine that there must also exist a relationship between FACULTY

and COURSE relations.

Designing a database using the second method is not a difficult task, since all

information needed for database design has been provided on the form. The designer does

not spend too much time trying to filter out the nonessential information. The problem with

this method is that when the users need to add new forms or delete existing forms, the

database structure must be modified. Thus, the Form-Relational method gives less flexibility

54

to the user to modify the system than the E/R Diagram-Relational-Form method. This is the

reason we chose the first method for designing a database in our proposed system.

B. THE RELATIONAL CATEGORY OF SUPERBASE-4

A relational database consists of three major parts: a structural part, an integrity part and

a manipulation part [Ref. 3.p. 369]. The structure part consists essentially of n-ary relations,

and nothing else. The integrity part consists of two general integrity rules, namely "entity

integrity" and "referential integrity". The entity integrity rule states that no component of

the primary key of a relation is allowed to accept nulls [Ref. 3:p. 279]. The referential

integrity rule states that the values of a given foreign key must match values of the

corresponding primary key [Ref. 3:p. 2821. And finally, the manipulation part provides a

set of algebraic operators for data manipulation.

In 1982, Codd proposed that a database management system be regarded as relational

only if it supports the operations restrict, project and join, without requiring any

predefinition of physical access paths to support those operations [Ref. 3:p. 376].

Superbase-4 therefore, does not qualify as a truly relational system, since in Superbase-4 we

may perforn t join operation according to values of some field only if tiat field is indexed.

Joins are time-consuming and expensive operations. Because of this Superbase-4 uses

an indexing technique to make joins less expensive to the system and its users. The only

problem with this technique is that index files need more memory space, especially for a

large database.

55

Furthermore, Codd divides the relational DBMS into four categories based on the degree

of supporting the aspect of the relational model: tabular, minimally relational, relationally

complete and fully relational.

Tabular is a system that supports tables as a data structure but not the set of algebraic

operators. Minimally relational is a system that supports tables, restrict, project and join but

no other relational operators. Relationally complete is a system that supports tables and all

of the operators of the relational algebra. Finally, fully relational is a system that support

all aspects of the model. Superbase-4 falls in the second category, that is minimally

relational because Superbase-4 only supports tables, restrict and project using the SELECT

command, and join using the Link command.

C. THE ADVANTAGES AND DISADVANTAGES OF USING SUPERBASE-4

The goal of this thesis is to study the effectiveness of a form-based interface. The form

approach was considered the most natural interface between end-user and data because a

large number of end-users employ forms or version of forms in their daily work activities

[Ref. 10:p. 162]. Even though end-users may be unfamiliar with programming and query

languages, they can still perform complex operations on predefined forms through simple

interactive interfaces provided by the form systems.

Several office information systems based on the forms concept have been designed and

implemented. For example, Office-By-Example (OBE) provides a screen interface to an

underlying relational database. FADS, a Form Application and Development System

designed at the University of California at Berkeley, includes facilities for the interactive

development of form applications and provides an interface to the INGRES database system.

FORMANAGER have been developed by General Research Board of the University of

56

Maryland, includes facilities for form specification, form processing, and form control. [Ref.

12.pp. 238-2391. Precision Software Limited presents a Form Designer with facilities for the

interactive development of form applications and provides an interface to the relational

database system [Ref. 8:p. 1-1].

In this section we present the advantages and disadvantages of using the Form Designer

3f Superbase-4.

1. Advantages

a. Easy to Use

The Form Designer is designed to generate forms used in database applications.

A form is specified interactively using the Form Designer toolbox. The structural layout of

the form is defined using a full screen editor, and the fields are defined through a dialog

box. This approach has an advantage. By using a full-screen editor, we can view the form

exactly as it will be used. Interactive specification allows the system to assist the user by

prompting the required information and giving immediate warning for errors.

The Form Designer toolbox is easy to use because the toolbox uses the direct

manipulation approach to control the user command. The direct manipulation approach

means that the operations or manipulations that are legal at any time are displayed for the

user. The user is not required to memorize the commands. Instead he selects the

appropriate command from among the choices displayed.

The Form Designer is different from the screen painter of dBASE IV. Although

the screen painter of dBASE IV allows users to interactively create forms for entering and

editing data, there is a fundamental difference between dBASE IV forms and Form Designer

forms. dBASE IV forms may not include commands or programs, while Form Designer

57

forms can. This difference makes the dBASE IV forms more difficult to use by the end-

users. The dBASE IV forms need a program to control the execution.

b. Easy to Modify

One difficulty in designing interactive systems is that the user may not have a

clear idea of what the system should be when it is done. For this reason the designers must

have a thorough understanding of the diverse community of users and the task that must be

accomplished. A clearer understanding of user preferences can be helpful in designing the

system. The software with easy-to-use facilities to design the screen format, such as the

Form Designer of Superbase-4, facilitates adjusting to the changing needs of the user.

The Form Designer of Superbase-4 has an easy-to-use facility to design the

screen format, namely the toolbox. The toolbox allows us to select an object on the form,

then change its appearance, move or resize it. Text objects may be edited, either by

changing the characteristic of the object, or by changing the text itself. Changing files and

fields references are also permitted.

The Form Designer forms are easy to modify. They are designed separately

from the DML programming language and we may modify the forms without changing the

program related to the forms. This approach is different from some other form systems such

as the Office Procedure Automation System (OPAS) from IBM research group [Ref. 15:p.

3281.

In OPAS, a form is considered as an information holding object consisting of

two parts. The first part is a form heading which provides the form name, form structure

and component names. The second part consists of one or more form instances. Forms

processing is performed via a high-level programming language, called FORMAL (from

58

Forms ORiented MAnipulation Language). Each process takes one or more forms as input

and produces a single form as output. Each process specification contains: 1) a title line that

specifies the name of the form, processes to be performed and the name of the output form,

2) a form heading for the output form, 3) a description of the data constituting the form and

4) qualification for the intended process, which may include the source of data or the

condition to be applied in selecting form instances. This approach makes form modifications

more complicated than the form modifications in the Form Designer of Superbase-4 because

every modification of the OPAS forms will affect the programs related to the forms.

c. Self-Contained Command

The Form Designer includes facilities for adding commands to forms.

Commands may be attached to pushbuttons or placed directly on the form as command

objects. When commands are attached to a pushbutton, they will be executed when we click

the pushbutton. When commands are put on the form as command objects, they will be

executed if the insertion point passes through them.

By having a self-contained command facility, we may create a complete

application without writing a DML program. Commands such as OPEN FORM, CLOSE

FORM or FORM [SHOW] [page #] can be attached to pushbutton and may be used to

control the application.

2. The Disadvantages

a. Difflcult to maintain

If we have a self-contained command facility then we may create an application

without writing any DML program in the traditional sense. However, for more complex

applications we need to combine the form's built in processing facility with a program.

59

Since the forms are designed separately from the DML program environment, we need to

construct an interface between a form and a set of DML subroutines. An interface can be

constructed by attaching the keywords RUN, CHAIN, GOTO, LOAD or GOSUB to the

pushbuttons.

The problem arises when later the user wants to modify the application. Since

the interface commands are attached to the pushbuttons, physically they are separate from

the DML program, although logically they are not. To modify the application, the user must

consider both sides, the interface commands and the DML subroutines, and make sure that

the modification does not cause a conflict between them.

To eliminate the problems of maintenance, the Form Designer must be able to

handle all operations that are needed by the application without any DML program. The

program is used only to control the execution order of the forms. This approach has been

used by the FORMANAGER from the University of Maryland [Ref. 12.p. 240].

Similar to the Form Designer, the FORMANAGER specifies the forms

interactively. The specification process involves two stages: 1) define the form syntax; and

2) define the form semantics. The specification of a field involves defining the field types

and field actions. The field type defines the usage of the field in the form application, such

as search field, display field and entry field. The field action describes the way in which a

user can perform an action on the underlying database system, such as input action or

update action. FORMANAGER translates all insert and update actions to the appropriate

SQL commands on the underlying database. The forms are executed by mapping the

specifications from the form into queries on the underlying database.

60

When we have an application with a number of internelated forms, we may

construct a procedural control of order and the conditions under which the forms are

executed using a high-level procedural language such as one developed by IBM research

[Ref. 12:p. 256]. This approach is different from that of Form Designer.

In Form Designer, the DML program is used not only to handle the order of

form executions but also to handle the complicated form operations that can not be handled

by Form Designer such as transaction lines browsing. Thus in Form Designer the form

operations are done by both the DML program and Form Designer. While in the

FORMANAGER, the form operations are handled by FORMANAGER itself. The program

is needed when we want to control the execution order of the interrelated forms.

b. The Message Dialog

The wording of messages and the layout of information on a screen are

important for novice users [Ref. 9:p. 3121. Densely packed screens may overwhelm the

beginner. With only modest effort, screen formats can be substantially improved to reduce

search time. Multiple windows are helpful for users, but displays that are cluttered are

distracting.

Superbase-4 provides the message dialogs to pass the messages from the system

to the user and vice versa. There are two groups of message dialogs: Superbase's own

format, and those that use the standard Windows message dialogs. Keyword REQUEST may

be used to select one of the Superbase's dialogs and display it on the screen. The format

and the location of the message dialog on the screen are defined by the system, and may

not be changed by the application designer. Unfortunately the placement of the message

dialog box in the middle of the screen, can be distracting to the user.

61

To improve the benefits of using the message dialogs in the Form Designer, the

application designer should be able to determine the location, the size or the format of the

message dialog based on the application needs. Otherwise, the application designers should

create their own message dialog especially when the message is used as a warning to the

user for verifying the data on the screen that are already typed by the user.

c. Transaction Lines

Many applications include one-to-many relationship between records in different

files. For example, the relationship between the DEPARTMENT and FACULTY relations

is one-to-many. This means that each record of the DEPARTMENT relation relates to more

than one record of the FACULTY relation. To display such a relationship, the Form

Designer provides transaction lines. The term "transaction lines" refers to a group of fields

of the "many" part of a relationship. Using the above example, the transaction lines refers

to a group of fields of FACULTY relation.

The problem of using transaction lines is that we cannot include more than one

one-to-many relationship. For example, suppose we want to create a form for

DEPARTMENT, FACULTY and COURSE relations. Since the relationship between

DEPARTMENT and FACULTY is one-to-many and the relationship between FACULTY

and OFFERING is also one-to-many, we are not able to create those relations in one form.

In comparison, FORMANAGER allows more than one one-to-many relationship

in transaction lines. Fields for repeating groups are denoted by field names followed by a

period and a digit which indicates the level of repetition. To make the Form Designer of

Superbase-4 a better tool, it must contain complete user facilities for all aspects of

application development for a relational database system, including the facility for handling

62

a nested repeating group. The nested repeating group facility can be used to reduce the

number of forms in the ESIS and make the system simpler. For example, the Department

Faculty form under the Department menu and Course Assignment form under the Faculty

menu can be combined into one form. This form will contain the information about the

faculty members who work in a given department and a list of courses that are assigned to

each faculty member.

63

V. CONCLUSION

Due to the improvements in database technology and the widespread dependence on

database management systems, users with little database experience must frequently interact

with an organizational database. Users need a user-friendly interface to interact with

database systems. The relational query languages such as SQL and QUEL are not ideal

languages for end-users. The forms approach is considered the most natural interface

between end-user and database because a large number of end-users employ forms in their

daily work activities. Several systems based on the forms concept have been designed and

implemented, such as OBE, FADS, OPAS, FORMANAGER and Form Designer of

Superbase-4.

To study the effectiveness of a form-base interface, we implemented a form-based

application named The Educational Scheduling Information System (ESIS) using the Form

Designer of Superbase-4. An evaluation of our implementation indicates that designing a

user interface using a form-based approach is easier than designing a user interface using

relational query languages. The Form Designer of Superbase-4 has easy-to-use facilities for

creating the forms. The facilities are based on the direct manipulation approach. The Form

Designer forms are different than forms from other systems. Using the self-contained

command facility of the Form Designer, we may have applications with several interrelated

forms without writing a DML program.

64

There are still some issues that need to be considered in future research. One of these

issues is determining alternative methods of designing relations in form-based applications.

Another issue is to investigate methods to overcome the limitations of the Form Designer.

Two methods of designing relations in form-based applications have been discussed.

Each method has advantages and disadvantages but the E/R Diagram-Relational-Forms

method is more suitable than the Forms-Relational method. The F/R Diagram-Relational-

Forms method gives flexibility to the users and application developers. The users and

application developers are free to design the forms they need based on the underlying

relational database. This method is time consuming and labor intensive.

Several limitations of the Form Designer were found during the development of ESIS.

The command interface and the DML program environment are not closely integrated. The

message dialog is located inappropriately. The transaction lines facility places an arbitrary

limit of one line at a time. We made some recommendations for improvement in these

areas.

65

APPENDIX A. RELATIONAL DATABASE SCHEMA

CNUM TITLE UNIT NATORDI TION jP PREREQ SYLLABUS

(a). Course Relation

FAC-J1 LAST FIRST PHONE TEACHING_ DCODE BIOGRI I
NAM NAME PREF APHY

(b). Faculty Relation

CNUM INST QUAR SECT CONST BEGIN_ END_ SOF CYE

RUCT TER ION RAINT CNT CNT AR H

(c). Offering Relation

D-CODE ID-NAMEI CHAIRMAN I PHONE

(d). Department Relation

F1) PUBLIC AUHO 'TIL VOL 'NO 'YEAR 'PAGES

(e). Publication Relation

66

APPENDIX B. DML SOURCE CODE LISTING

The following listings are the DML code that was created or modified for the

Educational Scheduling Information System.

REM MAIN
REM Dept of Computer Science
REM Departemental Database
REM
REM Author : C.Thomas Wu
REM Created : June 20, 1990
REM Modified : August 20, 1990 by Partoyo

REM Erase the system menu and display the opening REM screen
MENU CLEAR
OPEN FORM "openscr"

Lstart:
REM Set the heading
MENU CLEAR
hD$ = DATES (TODAY ,"mmm dd, yy")
hT$ = TIME$ (NOW ,"hh:mm am")
hH$ = hD$ +" DEPARTMENT OF COMPUTER SCIENCE +

hT$
SET HEADING hH$

REM Define the menu
MENU 1,0,1,"&Faculty"
MENU 1,1,1,"&General Info"
MENU 1,2,1,"Course &Assignment"
MENU 1,3,1,"Publication"

MENU 2,0,1,"&Course"
MENU 2,1,1,"&General Info"
MENU 2,2,1,"&Faculty &Assignment"

MENU 3,0,1,"&Offering"

67

MENU 3,1,1,"General Info"

MENU 4,0,1 ,"&Department"
MENU 4,1,1,"&General Info"
MENU 4,2,1,"&Departmnent &Faculty"

MENU 5,0,1,"&Update"
MENU 5,1,1,"&New Record"
MENU 5,2,1,"&Modify"

MENU 6,O,1,"&Report"
MENU 6,1,1,"By &Instructor"
MENU 6,2,1,"By &Course"

MENU 7,0,1 ,"&Others"
MENU 7,1,1,"&I-elp"
MENU 7,2,1,"&Exit"

Lprocess:
PANEL OFF
MENU ON mnu%,subjnenu%
WAIT MENU
MENU CLEAR
ON mnu% GOTO fac,crs,ofr,dep,updrep,ext

fac:
SELECT CASE sub-mnu%
CASE 1

CHAIN "fac....i"
CASE 2

CHAIN "fac-c-a"
CASE 3

CHAIN "fac-.pub"
END SELECT

cms:
SELECT CASE sub-mnu%
CASE 1

CHAIN "crsgji"
CASE 2

CHAIN "crsi-a"
END SELECT

68

ofr
CHAIN "ofr.g.i"

dep:
SELECT CASE submnu%
CASE 1

CHAIN "depg"
CASE 2

CHAIN "depi.f'
END SELECT

upd:
SELECT CASE sub mnu%
CASE I

CHAIN "Lmain"
CASE 2

CHAIN "umain"
END SELECT

rep:
SELECT CASE submnu%
CASE 1

CHAIN "Lsch_rp"
CCASE 2

CHAIN "c-schjrp"
END SELECT
GOTO Lstart

ext:
IF submnu% = 1 THEN

REQUEST " Help System","dummy",139
GOTO Lstart

ELSE
MENU CLEAR :CLOSE ALL :PANEL ON: SET HEADING .. : END

END IF

REM ---
REM FAC-CA
REM Dept of Computer Science
REM Departemental Database
REM
REM Author : C.Thomas Wu

69

REM Created June 20, 1990
REM Modified: August 20, 1990 by Partoyo
REM--------------------

ON ERROR GOTO L99
PANEL OFF
OPEN FORM "inst_sch"
INDEX lastname

LI: REM Wait here for a pushbutton to be clicked
FORM
WAIT MOUSE
GOTO LI

Ll1: REM Next Record
SELECT FORM NEXT
ON ERROR GOTO L21
GOTO Li

L12: REM Prey Record
SELECT FORM PREVIOUS
ON ERROR GOTO L21
GOTO Li

L13: REM Select a specific record by Fac.last name
REQUEST "Select a Faculty's lastname",

"",20,a%,a$,15,lastname.faculty
SELECT FORM FIRST
IF a% = 0 THEN GOTO Li
WHILE lastname.faculty <> a$

SELECT FORM NEXT
WEND
GOTO LI

L14: REMPrint the form
PRINT CURRENT PAGE USING 1,0,0,0,1,0,1
GOTO Li

L15: REM Exit and return to aminawenu
MENU CLEAR
CHAIN "main"

70

L21: REM Panel errors
REQUEST ERR$ (ERRNO)," ",2,a%
SELECT CURRENT
GOTO LI

L99: REM Error conditions
REQUEST ERR$ (ERRNO),"press OK to make another selection",

1 ,a%
IF a% = 1 THEN RESUME Li
CHAIN "main"
END

R E M --
REM FACGI
REM Dept of Computer Science
REM Departemental Database
REM
REM Author C.Thomas Wu
REM Created • June 21, 1990
REM Modified August 24, 1990 by Partoyo
R E M ---

ON ERROR GOTO L99
PANEL OFF
OPEN FORM "faculty"

INDEX lastname

LI: REM Wait here for a pushbutton to be clicked
FORM
WAIT MOUSE
GOTO LI

Lll: REM Next Record
SELECT FORM NEXT
ON ERROR GOTO L21
GOTO LI

L12: REM Prey Record
SELECT FORM PREVIOUS
ON ERROR GOTO L21
GOTO L1

71

L15: RYM Exit and return to main menu
MENU CLEAR
CHAIN "main"

L16: REM Print the form
PRINT CURRENT PAGE USING 1,0,0,0,1,0,1
GOTO L I

L17: REM Select a specific record by Fac.last name
REQUEST "Select a Faculty's lasmame",

"",20,a%,a$,15jasmame.faculty
SELECT FORM FIRST
IF a% = 0 THEN GOTO Li
WHILE lastname.faculty o a$

SELECT FORM NEXT
WEND
GOTO Li

Llb: REM Brwosing foward
IF RECCOUNT("*") <> 0 THEN

SELECT FORM NEXT PAGE
ELSE

SELECT FORM CURRENT
END IF
GOTO Li

Llc: REM Browsing backward
IF RECCOUNT ("*") <> 0 THEN

SELECT FORM PREVIOUS PAGE
ELSE

SELECT FORM CURRENT
END IF
GOTO LI

L21: REM Panel errors
REQUEST ERR$ (ERRNO)," ",2,a%
SELECT CURRENT
GOTO LI

L99: REM Error conditions
REQUEST ERR$ (ERRNO),"press OK to make another

selection", l,a%

72

IF a% = I THEN RESUME Li
CHAIN "main"
END

REM ---
REM FACPUB
REM Dept of Computer Science
REM Departemental Database
REM
REM Author Partoyo
REM Created August 21, 1990
REM Modified:
REM ---

ON ERROR GOTO L99
PANEL OFF
OPEN FORM "public"
INDEX lastname

LI: REM Wait here for a pushbutton to be clicked
FORM
WAIT MOUSE
GOTO LI

Lll: REM Next Record
SELECT NEXT
ON ERROR GOTO L21
GOTO LI

L12: REM Prey Record
SELECT PREVIOUS
ON ERROR GOTO L21
GOTO L I

L13: REM Exit and return to amin menu
MENU CLEAR
CHAIN "main"

L14: REM Select a specific record by Fac.last name
REQUEST "Select Author", "",20,a%,a$,50,author.public
SELECT FORM FIRST

73

IF a% = 0 THEN GOTO Li
WHILE author.public <> a$

SELECT FORM NEXT
WEND
GOTO Li

L15: REM Print the form
PRINT CURRENT PAGE USING 1,0,0,0,1,0,1
GOTO Li

L21: REM Panel errors
REQUEST ERR$ (ERRNO), ",2,a%

SELECT CURRENT
GOTO LI

L99: REM Error conditions
REQUEST ERR$ (ERRNO),"press OK to make another

selection", 1,a%
IF a% = 1 THEN RESUME Li
CHAIN "main"
END

REM -------------- - ------

REM CRS_G_1
REM Dept of Computer Science
REM Departemental Database
REM
REM Author C.Thomas Wu
REM Created June 21, 1990
REM Modified : August 5,1990 by Partoyo
REM ---------------------------

ON ERROR GOTO L99
PANEL OFF
OPEN FORM "course"

LI: REM Wait here for a pushbutton to be clicked
FORM
WAIT MOUSE
GOTO L I

74

Li1: REM Next Record
SELECT NEXT
ON ERROR GOTO L21
GOTO LI

L12: REM Prev Record
SELECT PREVIOUS
ON ERROR GOTO L21
GOTO Li

L14: REM Exit and return to amin menu
MENU CLEAR
CHAIN "main"

L17: REM Select a specific record by Fac.last name
REQUEST "Select Course Code", .".,20,a%,a$,6,cnum.course
SELECT FIRST
IF a% = 0 THEN GOTO Li
WHILE cnum.course < a$

SELECT NEXT
WEND
GOTO Li

L18: REM Print the form
PRINT CURRENT PAGE ALL USING 1,0,0,0,1,0,1
DISPLAY
FORM 1
GOTO LI

L21: REM Panel errors
REQUEST ERR$ (ERRNO), "",2,a%
SELECT CURRENT
GOTO LI

L99: REM Error conditicns
REQUEST ERR$ (FRRNO),"press OK to make another

selection", 1 ,a9/
IF a% = 1 THEN RESUME Li
CHAIN "main"
END

75

R E M --
REM CRSIA
REM Dept of Computer Science
REM Departemental Database
REM
REM Author : C.Thomas Wu
REM Created : June 21, 1990
REM Modified : August 7,1990 by Partoyo
R E M ---

ON ERROR GOTO L99
PANEL OFF
OPEN FORM "crsesch"

Ll: REM Wait here for a pushbutton to be clicked
FORM
WAIT MOUSE
GOTO Li

Ll: REM Next Record
SELECT NEXT
ON ERROR GOTO L21
GOTO LI

L12: REM Prey Record
SELECT PREVIOUS
ON ERROR GOTO L21
GOTO LI

L13: REM Exit and return to main menu
MENU CLEAR
CHAIN "main"

L14: REM Select a specific record by Title.course
REQUEST "Select Course
Title"," ",20,a%,a$,50,title.course
SELECT FORM FIRST
IF a% = 0 THEN GOTO LI
WHILE title.course <> a$

SELECT FORM NEXT
WEND
GOTO LI

76

L15: REM Print the form
PRINT CURRENT PAGE ALL USING 1,0,0,0,1,0,1
DISPLAY
GOTO L I

L21: REM Panel errors
REQUEST ERR$ (ERRNO)," ",2,a%
SELECT CURRENT
GOTO Li

L99: REM Error conditions
REQUEST ERR$ (ERRNO),"press OK to make another

selection", l,a%
IF a% = I THEN RESUME Li
CHAIN "main"
END

REM ---
REM OFR G I
REM Dept of Computer Science
REM Departemental Database
REM
REM Author C.Thomas Wu
REM Created June 21, 1990
REM Modified : August 24,1990 by Partoyo
REM ------------------- --------------------

ON ERROR GOTO L99
PANEL OFF
OPEN FORM "offering"

Li: REM Wait here for a pushbutton to be clicked
FORM
WAIT MOUSE
GOTO Li

Lll: REM Next Record
SELECT FORM NEXT
ON ERROR GOTO L21
GOTO LI

77

L12: REM Prev Record
SELECT FORM PREVIOUS
ON ERROR GOTO L21
GOTO Li

L13: REM Exit and return to main menu
MENU CLEAR
CHAIN "main"

L14: REM Select a specific record by cnum.offering
REQUEST "Select Course

Number"," ",20,a%,a$,14,cnum.offering
SELECT FORM FIRST
IF a% = 0 THEN GOTO Li
WHILE title.course <> a$

SELECT FORM NEXT
WEND
GOTO LI

L15: REM Print the form
PRINT CURRENT PAGE ALL USING 1,0,0,0,1,0,1
DISPLAY
GOTO LI

L21: REM Panel errors
REQUEST ERR$ (ERRNO)," ",2,a%
SELECT CURRENT
GOTO Li

L99: REM Error conditions
REQUEST ERR$ (ERRNO),"press OK to make another

selection", l,a%
IF a% = 1 THEN RESUME Li
CHAIN "main"
END

REM ---
REM DEPG-1
REM Dept of Computer Science
REM Departemental Database
REM

78

REM Author : Partoyo
REM Created : August 24, 1990
REM Modified :
REM ---

ON ERROR GOTO L99
PANEL OFF
OPEN FORM "dep-scr"

Li: REM Wait here for a pushbutton to be clicked
FORM
WAIT MOUSE
GOTO Li

Lli: REM Next Record
SELECT FORM NEXT
ON ERROR GOTO L21
GOTO Li

L12: REM Prey Record
SELECT FORM PREVIOUS
ON ERROR GOTO L21
GOTO Li

L13: REM Exit and return to main menu
MENU CLEAR
CHAIN "main"

L14: REM Select a specific record by Department
REQUES r "Select Department Name","",

20,a%,a$,50,d-name.depart
SELECT FORM FIRST
IF a% = 0 THEN GOTO Li
WHILE dname.depart <> a$

SELECT FORM NEXT
WEND
GOTO Li

L15: REM Print the form
PRINT CURRENT PAGE ALL USING 1,0,0,0,1,0,1
DISPLAY
GOTO LI

79

L21: REM Panel errors
REQUEST ERR$ (ERRNO)," ",2,a%
SELECT CURRENT
GOTO LI

L99: REM Error conditions
REQUEST ERR$ (ERRNO),"press OK to make another

selection", 1,a%
IF a% = 1 THEN RESUME Li
CHAIN "main"
END

REM --
REM DEPIF
REM Dept of Computer Science
REM Departemental Database
REM
REM Author : Partoyo
REM Created : August 8, 1990
REM Modified :
REM --

ON ERROR GOTO L99
PANEL OFF
OPEN FORM "workscr"

LI: REM Wait here for a pushbutton to be clicked
FORM
WAIT MOUSE
GOTO LI

Lii: REM Next Record
SELECT FORM NEXT
ON ERROR GOTO L21
GOTO LI

L12: REM Prey Record
SELECT FORM PREVIOUS
ON ERROR GOTO L21
GOTO LI

80

L13: REM Next Page
IF RECCOUNT ("*") < 0 THEN

SELECT FORM PREVIOUS PAGE
ELSE

SELECT FORM CURRENT
END!F
GOTO LI

L14: REM Previous Page
IF RECCOUNT ("*") <> 0 THEN

SELECT FORM PREVIOUS PAGE
ELSE

SELECT FORM CURRENT
END IF
GOTO LI

L15: REM Exit and return to main menu
MENU CLEAR
CHAIN "main"

L16: REM Select a specific record by Department
REQUEST "Select Department Name","",

20,a%,a$,50,d-name.depart
SELECT FORM FIRST
IF a% = 0 THEN GOTO Li
WHILE dname.depart <> a$

SELECT FORM NEXT
WEND
GOTO Li

L17: REM Print the form
PRINT CURRENT PAGE ALL USING 1,0,0,0,1,0,1
DISPLAY
GOTO Li

L21: REM Panel errors
REQUEST ERR$ (ERRNO)," ",2,a%
SELECT CURRENT
GOTO LI

L99: REM Error conditions
REQUEST ERR$ (ERRNO),"press OK to make another

81

selection", l,a%
IF a% = I THEN RESUME LI
CHAIN "main"
END

REM --------------------------...- ..- - ---------

REM ISCHRP
REM Dept of Computer Science
REM Departemental Database
REM
REM Author : Partoyo
REM Created : August 24, 1990
REM Modified :
REM-----------------------

OPEN FILE "C:\SUPBASE\THESIS\faculty"
OPEN FILE "C:'SUPBASE\THESIS\THESIS\offering"

ON ERROR GOTO em

REQUEST "Report to Printer ?","",134,a%
IF a% = 0 THEN END ELSE IF a% = 1 THEN PRINT;
REPORT

HEADING

? @ 12;" DEPARTMENT OF COMPUTER SCIENCE"
? @12;"FACULTY TEACHING ASSIGMENT 1990 - 1991"
? @25;&15 TODAY
END HEADING

GROUP lasmame.faculty
BEFORE GROUP lasmame.faculty
? @7;&4facid.faculty;@ 14;& 151astnane.faculty
END GROUP

AFTER GROUP lastname.faculty

END GROUP

GROUP qurater.offering

82

BEFORE GROUP quarter.offering
? @34;&7quarter.offering

END GROUP

AFTER GROUP quarter.offering

END GROUP

SELECT @42;&6cnum.offering;@51 ;& lsection.offering
WHERE lastname.faculty = instructor.offering
ORDER lastname.faculty,quarter.offering

getout: REM back to main program
CHAIN "main"

er: REM error condition
RESUME getout
REM ---------------...-------------------

REM CSCHRP
REM Dept of Computer Science
REM Departemental Database
REM
REM Author : Partoyo
REM Created : August 24, 1990
REM Modified :
REM --

OPEN FILE "C:'SUPBASE\THESIS\course"
OPEN FILE "C:\SUPBASE\THESIS\THESIS\offering"

ON ERROR GOTO errt

REQUEST "Report to Printer ?","",134,a%
IF a% = 0 THEN END ELSE IF a% = I THEN PRINT;
REPORT

HEADING

? @ 12;"DEPARTMENT OF COMPUTER SCIENCE"
? @12;" COURSE ASSIGNMENT 1990 - 1991"
? @25;&15 TODAY

83

END HEADING

GROUP cnum.course
BEFORE GROUP cnum.course

? @5;&6cnum.course;@ 13;&54title.course

END GROUP

AFTER GROUP cnum.course
9

END GROUP

GROUP qurater.offering
BEFORE GROUP quarter.offering
? @39;&7quarter.offering

END GROUP

AFTER GROUP quarter.offering
9

END GROUP

SELECT @48;& 15instructor.offering
WHERE cnum.course = cnum.offering
ORDER cnum.course,quarter.offering

getout: REM back to main program
CHAIN "main"

errt: REM error condition
RESUME getout

REM------------------
REM UMAIN
REM Dept of Computer Science
REM Departemental Database
REM
REM Author : Partoyo
REM Created : September 8, 1990
REM Modified:

84

REM --- E----------------------------- - ----------
REM Erase the system menu and display the opening screen
MENU CLEAR
OPEN FORM "umain"

LI: REM wait here for a pushbutton to be clicked
FORM
WAIT MOUSE
GOTO LI

LUF: REM Update Faculty
CHAIN "u_fac"

LUC: REM Update Course File
CHAIN "ucourse"

LUD: REM Update Department
CHAIN "udept"

LUO: REM Update Offering
CHAIN "uoffer"

LUP: REM Update Publication
CHAIN "u-public"

EXT: REM back to main program
CHAIN "main"

REM --
REM UFAC
REM Dept of Computer Science
REM Departemental Database
REM
REM Author : Partoyo
REM Created : September 20, 1990
REM Modified :
REM --
REM Erase the system menu and display the blank form

ON ERROR GOTO L99
msl$ = "Ls entry correct ?"

85

ms2$ = "Select another record ?"
ms3$ = "Save current record ?"

OPEN FORM "ufac"

Lli: REM Select record
REQUEST "Select Faculty Last Name",""

20,a%,a$,15,1asmame.faculty
SELECT FIRST
IF a% = 0 THEN GOTO L12
WHILE lastname.faculty <> a$

SELECT NEXT
WEND
FORM

L I :REM Update the existing record
MOUSE ON
ENTER
MOUSE OT

L1 12:REQUEST ms1$,"",I30,a%
IF a% = 0 THEN GOTO LI
REQUEST ms2$,"", 130,a%
IF a% = I THEN

STORE
GOTO Lii

ELSE
MOUSE ON
GOTO L12

END IF

L12: REM Wait here for a pushbutton to be clicked
WAIT MOUSE
GOTO L12

L13: REM Back to the main program
REQUEST ms3$,"",130,a%
IF a% = I THEN STORE
CHAIN "main"

L14: REM Undo adding record
SELECT CURRENT
FORM

86

GOTO Llil

L99: REM Error condition
REQUEST ERR$ (ERRNO)," Press OK to make another

selesction",l,a%
IF a% = I THEN GOTO LlI
GOTO L12
END

REM ------------------ ------------------------
REM UCOURSE
REM Dept of Computer Science
REM Departemental Database
REM
REM Author Partoyo
REM Created September 20, 1990
REM Modified :
REM ------------.-....--------------------
REM Erase the system menu and display the blank form

ON ERROR GOTO L99
msl$ = "Is entry correct ?"

ms2$ = "Select another record ?"
ms3$ = "Save current record ?"

OPEN FORM "u_course"

LIl: REM Select record
REQUEST "Select Course Code",'"'

20,a%,a$,6,cnum.course
SELECT FIRST
IF a% = 0 THEN GOTO L12
WHILE cnum.course <> a$

SELECT NEXT
WEND
FORM

LiI :REM Update the existing record
MOUSE ON
ENTER
MOUSE OFF

87

L112:REQUEST msi$,"",130,a%
IF a% = 0 THEN GOTO L11
REQUEST ms2$,"", 130,a%
IF a% = I THEN

STORE
GOTO 11

ELSE
MOUSE ON
GOTO L12

END IF

L12: REM Wait here for a pushbutton to be clicked
WAIT MOUSE
GOTO L12

L13: REM Back to the main program
REQUEST ms3$,"",130,a%
IF a% = I THEN STORE
CHAIN "main"

L14: REM Undo adding record
SELECT CURRENT
FORM
GOTO LlII

L99: REM Error condition
REQUEST ERR$ (ERRNO)," Press OK to make another

selesction",l,a%
IF a% = I THEN GOTO L1I
GOTO L12
END

REM --------------------------
REM UOFFER
REM Dept of Computer Science
REM Departemental Database
REM
REM Author : Partoyo
REM Created : September 20, 1990
REM Modified : October 12,1990
REM ------------.----------------------

88

REM Erase the system menu and display the blank form

ON ERROR GOTO L99
msl$ = "Is entry correct ?"

ms2$ = "Select another record?"
rns3$ = "Save current record ?"

OPEN FORM "uoffer"

Lll: REM Select record
REQUEST "Select Course Code",""

20,a%,a$,6,cnum.offering
SELECT FIRST
IF a% = 0 THEN GOTO L12
WHILE cnum.offering <> a$

SELECT NEXT
WEND
FORM

L111:REM Update the existing record
MOUSE ON
ENTER
MOUSE OFF

L112:REQUEST msl$,"",130,a%
IF a% = 0 THEN GOTO LII
REQUEST ms2$,"", 130,a%
IF a% = 1 THEN

STORE
GOTO L1I

ELSE
MOUSE ON
GOTO L12

END IF

L12: REM Wait here for a pushbutton to be clicked
WAIT MOUSE
GOTO L12

L13: REM Back to the main program
REQUEST ms3$,"", 130,a%
IF a% = I THEN STORE
CHAIN "main"

89

L14: REM Undo adding record
SELECT CURRENT
FORM
GOTO LllI

L99: REM Error condition
REQUEST ERR$ (ERRNO)," Press OK to make another

selesction",l,a%
IF a% = I THEN GOTO L1I
GOTO L12
END

REM --------...-----------------.---------
REM UDEPT
REM Dept of Computer Science
REM Departemental Database
REM
REM Author : Partoyo
REM Created : September 20, 1990
REM Modified : October 12,1990
R E M ---
REM Erase the system menu

ON ERROR GOTO L99
msl$ = "Is entry correct ?"
ms2$ = "Select another record ?"
ms3$ = "Save current record ?"

OPEN FORM "u_dept"

Lll: REM Select record
REQUEST "Select Department Name","'

20,a%,a$,50,d-name.depart
SELECT FIRST
IF a% = 0 THEN GOTO L12
WHILE dname.depart <> a

SELECT NEXT
WEND
FORM

L 11:REM Update the existing record
MOUSE ON

90

ENTER
MOUSE OFF

L112:REQUEST msl$,"",130,a%
IF a% = 0 THEN GOTO L111
REQUEST ms2$," ",30,a%

IF a% = 1 THEN
STORE
GOTO L1I

ELSE
MOUSE ON
GOTO L12

END IF

L12: REM Wait here for a pushbutton to be clicked
WAIT MOUSE
GOTO L12

L13: REM Back to the main program
REQUEST ms3$,"",130,a%
IF a% = 1 THEN STORE
CHAIN "main"

L14: REM Undo adding record
SELECT CURRENT
FORM
GOTO L 11i

L99: REM Error condition
REQUEST ERR$ (ERRNO)," Press OK to make another

selesction",l,a%
IF a% = I THEN GOTO L1I
GOTO L12
END

REM --
REM UPUBLIC
REM Dept of Computer Science
REM Departemental Database
REM
REM Author : Partoyo

91

REM Created : September 20, 1990
REM Modified : October 12,1990
RE M EM............................. ---------------
REM Erase the system menu

ON ERROR GOTO L99
msl$ = "Is entry correct ?"
ms2$ = "Select another record ?"
ms3$ = "Save current record ?"
OPEN FORM "u-public"

Lli: REM Select record
REQUEST "Select Author",""

20,a%,a$,50,author.public
SELECT FIRST
IF a% = 0 THEN GOTO L12
WHILE author.public <> a$

SELECT NEXT
WEND
FORM

Llll:REM Update the existing record
MOUSE ON
ENTER
MOUSE OFF

L112:REQUEST msl$,"",130,a%
IF a% = 0 THEN GOTO L11
REQUEST ms2$,"", 130,a%
IF a% = 1 THEN

STORE
GOTO L1I

ELSE
MOUSE ON
GOTO L12

END IF

L12: REM Wait here for a pushbutton to be clicked
WAIT MOUSE
GOTO L12

L13: REM Back to the main program

92

REQUEST ms3$,"",130,a%
IF a% = 1 THEN STORE
CHAIN "main't

L14: REM Undo adding record
SELECT CURRENT
FORM
GOTO Lii

L99: REM Error condition
REQUEST ERR$ (ERRNO)," Press OK to make another

selesction",i,a%
IF a% = I THEN GOTO Ll1
GOTO L12
END

R E M --
REM IMAIN
REM Dept of Computer Science
REM Departemental Database
REM
REM Authoi Partoyo
REM Created : September 8, 1990
REM Modified :
R E M ----- --- --- -- -- - --- -- ---.-. -. -. -.
REM Erase the system menu and display the opening screen
MENU CLEAR
OPEN FORM "imain"

LI: REM wait here for a pushbutton to be clicked
FORM
WAIT MOUSE
GOTO Li

LIF: REM Update Faculty
CHAIN "ifac"

LIC: REM Update Course File
CHAIN "icourse"

LID: REM Update Department

93

CHAIN "iLdept"

LIO: REM Update Offering
CHAIN "i offer"

LIP: REM Update Publication
CHAIN "i-public"

EXT: REM back to main program
CHAIN "main"

R E M --
REM IFAC
REM Dept of Computer Science
REM Departemental Database
REM
REM Author : Partoyo
REM Created : September 8, 1990
REM Modified :
R E M -..----------------------------------.-- -
REM Erase the system menu and display the blank form
ON ERROR GOTO L99
upd$ = "n"

msl$ = "Is entry correct ?"
ms2$ = "Continue with data entry ?"
ms3$ = "The new record has been deleted"
MENU CLEAR
OPEN FORM "i-fac"

LI: REM Set up data entry
BLANK FORM

Lli: REM Enter New record
ON ERROR GOTO L99
upd$ = "n"

MOUSE ON
ENTER
MOUSE OFF
REM ***** Verify wether the entry is correct or not
REQUEST msl$,"", 130,a%
IF a% = 0 THEN GOTO L1I

94

GOTO L15

L12: REM Wait here for a pushbutton to be clicked
WAn MOUSE
GOTO L12

L13: REM Back to the main program
CHAIN "main"

L14: REM Undo adding record
IF upd$ = "n" THEN GOTO L1
SELECT REMOVE
REQUEST ms3$,ms2$, 130,a%
IF a% = 1 THEN GOTO Li
MOUSE ON
GOTO L12

L15: REM Insert record
STORE
upd$ = "y"
REM **** Continue with data entry ?
REQUEST ms2$,"", 130,a%
IF a% = 1 THEN GOTO Li
MOUSE ON
GOTO L12

L99: REM Error condition
IF ERRNO = 57 THEN

REQUEST "Record already exist"," ",2,a%
RESUME LII

ELSE
REQUEST ERR$ (ERRNO), "Press OK to make another
selection", 1,a%
CHAIN "main"

END IF
END

REM --
REM ICOURSE
REM Dept of Computer Science
REM Departemental Database

95

REM
REM Author : Partoyo
REM Created September 8, 1990
REM Modified:
REM -----------.-.----.........-------------------
REM Erase the system menu and display the blank form
ON ERROR GOTO L99
upd$= "n"
msl$ = "Is r x-, correct ?"

ms2$ = "Contnue with data entry ?"

ms3$ = "The new record has been deleted"
MENU CLEAR
OPEN FORM "icourse"

LI: REM Se: up data entry
BLANK FORM

Ll1: REM Enter New record
ON ERROR GOTO L99
upd$ = "n"
MOUSE ON
ENTER
MOUSE OFF
REM ***** Verify wether the entry is correct or not
REQUEST ms 1 $,"", 130,a%
IF a% = 0 TKEN GOTO L11
GOTO L15

L12: REM Wait here for a pushbuuon to be clicked
WAIT MOUSE
GOTO L12

L13: REM Back to the main program
CHAIN "main"

L14: REM Undo adding record
IF upd$ = "n" THEN GOTO Ll
SELEC7 REMOVE
REQUEST ms3$,ms2$,130,a%
IF a% = 1 THEN GOTO Li
MOUSE ON
GOTO L12

96

L15: REM Insert record
STORE
upd$ = "y"
REM **** Continue with data entry ?
REQUEST ms2$,"", 130,a%
IF a% = I THEN GOTO Ll
MOUSE ON
GOTO L12

L99: REM Error condition
IF ERRNO = 57 THEN

REQUEST "Record already exist"," ",2,a%
RESUME Lll

ELSE
REQUEST ERR$ (ERRNO), "Press OK to make another
selection", l,a%
CHAIN "main"

END IF
END

REM - -------------------------

REM IOFFER
REM Dept of Computer Science
REM Departemental Database
REM
REM Author Partoyo
REM Created : September 8, 1990
REM Modified :
REM --
REM Erase the system menu and display the blank form
ON ERROR GOTO L99
upd$ to n=
msl$ = "Is entry correct ?"

ms2$ = "Continue with data entry ?"
ms3$ = "The new record has been deleted"
MENU CLEAR
OPEN FORM "i-offer"

LI: REM Set up data entry
BLANK FORM

Ll: REM Enter New record

97

ON ERROR GOTO L99
upd$ = "n"
MOUSE ON
ENTER
MOUSE OFF
REM ***** Verify wether the entry is correct or not
REQUEST msl$,"", 130,a%
IF ao = 0 THEN GOTO LI
GOTO ,15

L12: REM Wait here for a pushbutton to be clicked
WAIT MOUSE
GOTO L12

L13: REM Back to the main program
CHAIN "main"

L14: REM Undo adding record
IF upd$ = "n" THEN GOTO Li
SELECT REMOVE
REQUEST ms3$,ms2$,130,a%
IF a% = 1 THEN GOTO LI
MOUSE ON
GOTO L12

L15: REM Insert record
STORE

uipd$ = "y "

REM **** Continue with data entry ?
REQUEST ms2$,"",130,a%
IF a% = I THEN GOTO Li
MOUSE ON
GOTO L12

L99: REM Error condition
IF ERRNO = 57 THEN

REQUEST "Record already exist","",2,a%
RESUME LI1

ELSE
REQUEST ERR$ (ERRNO), "Press OK to make another

selection", l,a%
CHAIN "main"

98

END IF
END

REM M...............................-- - - ------
REM IDEPT
REM Dept of Computer Science
REM Departemental Database
REM
REM Author : Partoyo
REM Created : September 8, 1990
REM Modified :
REM --
REM Erase the system menu and display the blank form
ON ERROR GOTO L99
upd$- "n"
msl$ = "Is entry correct ?"

ms2$ = "Continue with data entry ?"
ms3$ = "The new record has been deleted"
MENU CLEAR
OPEN FORM "iLdept"

LI: REM Set up data entry
BLANK FORM

LIl: REM Enter New record
ON ERROR GOTO L99
upd$ = n "

MOUSE ON
ENTER
MOUSE OFF
REM ***** Verify wether the entry is correct or not
REQUEST msl$,"",130,a%
IF a% = 0 THEN GOTO L11
GOTO Li5

L12: REM Wait here for a pushbutton to be clicked
WAIT MOUSE
GOTO L12

L13: REM Back to the main program
CHAIN "main"

99

L14: REM Undo adding record
IF upd$ = "n" THEN GOTO Li
SELECT REMOVE
REQUEST ms3$,ms2$, 130,a%
IF a% = 1 THEN GOTO Li
MOUSE ON
GOTO L12

L15: REM Insert record
STORE
upd$ ="y"
REM **** Continue with data entry ?
REQUEST ms2$,"",130,a%
IF a% = 1 THEN GOTO Li
MOUSE ON
GOTO L12

L99: REM Error condition
IF ERRNO = 57 THEN

REQUEST "Record already exist"," ",2,a%
RESUME L1I

ELSE
REQUEST ERR$ (ERRNO), "Press OK to make another
selection", l,a%
CHAIN "main"

END IF
END

REM ---
REM IPUBLIC
REM Dept of Computer Science
REM Departemental Database
REM
REM Author : Partoyo
REM Created : September 8, 1990
REM Modified :
REM ------ ----- -- -
REM Erase the system menu and display the blank form
ON ERROR GOTO L99
upd$ = "n"

msi$ = "Is entry correct "

100

ms2$ = "Continue with data entry ?"

ms3$ = "The new record has been deleted"
MENU CLEAR
OPEN FORM "i-public"

Li: REM Set up data entry
BLANK FORM

Lli: REM Enter New record
ON ERROR GOTO L99
upd$ = "n"
MOUSE ON
ENTER
MOUSE OFF
REM ***** Verify wether the entry is correct or not
REQUEST msl$,"",130,a%
IF a% = 0 THEN GOTO L1I
GOTO L15

L12: REM Wait here for a pushbutton to be clicked
WAIT MOUSE
GOTO L12

L13: REM Back to the main program
CHAIN "main"

L14: REM Undo adding record
IF upd$ = "n" THEN GOTO Li
SELECT REMOVE
REQUEST ms3$,ms2$, 130,a%
IF a% = 1 THEN GOTO Li
MOUSE ON
GOTO L12

L15: REM Insert record
STORE
upd$ = to

REM **** Continue with data entry ?
REQUEST ms2$,"", 130,a%
IF a% = 1 THEN GOTO Li
MOUSE ON
GOTO L12

101

L99: REM Error condition
IF ERRNO = 57 THEN

REQUEST "Record already exist","",2,a%
RESUME L11

ELSE
REQUEST ERR$ (ERRNO), "Press OK to make another
selection", l,a%
CHAIN "main"

END IF
END

102

LIST OF REFERENCES

1. Elmasri/Navathe, Fundamentals of Database System, The Benjamin/Cumming
Publishing Co., 1989.

2. David M.Kroenke and Kathleen A.Dolan, Database Processing, Macmillan
Publishing Co., 1988.

3. C.J.Date, An Introduction to Database System Volume 1, Addison-Wesley Publishing
Co., 1990.

4. Jonathan S.Wall, Semantic shortcomings of Database Management Systems Based
on A Relational Model, Master Thesis, Naval Postgraduate School, Monterey,
California, June 1988.

5. Naval Postgraduate School Technical Report NPS52-88-050, Implementation of
Visual Database Interface using an Object-Oriented Language, by C. T. Wu and
D.K.Hsiao, June 1988.

6. Michael Hyman, Microsoft Windows Program Development, Management
Information Source Inc., 1988.

7. Microsoft Corporation, Microsoft User's Guide, Microsoft Corporation, 1987.

8. Precision Software Limited, Superbase-4 Database and Text Editor, Precision Inc,
1990.

9. Ben Shneiderman, Designing the User Interface Strategies for Effective Human-
Computer Interaction, Addison-Wesley Publishing Company, 1987.

10. Nan C.Shu, Harry K.T. Wong, Vincent Y.Lum, Forms Approach to Requirements

Specification for Database Design, ACM, 1983.

11. Nan C.Shu, Visual Programming, Van Nonstrand Reinhold Company Inc., 1988.

12. Yao, S. B.,Hevner, A.R., Shi, Z., and Luo, D., FORMANAGER: An Office Form
Management System, ACM Transaction of Office Information System, Vol.2,
No.3 (July 1984), pp.235-262.

13. D.Tsichritzis, FORM MANAGEMENT, Communications of ACM, Vol.25, No.7, July
1982.

103

14. Judith R-Brown, Steve Cunningham, Programming The User interface, John Wiley
& Sons Inc., 1989.

15. Lum, V.Y., Choy, D.M., and Shu, N.C., OPAS. An Office Automation System, IBM
Syst.J. Vol.21, No.3, 1982.

16. Alan Simpson, Understanding dBASE IV, SYBEX Inc., 1989.

104

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Department Chairman, Code 37 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. Professor Thomas Wu, Code CSIWq 1
Naval Postgraduate School
Monterey, California 93943-5000

5. R.Griffin, Code GS/Gr 1
Naval Postgraduate School
Monterey, California 93943-5000

6. Office of Defense Attache I
Embassy of the Republic of Indonesia
2020 Massachusetts Avenue, N.W.
Washington, D.C., 2003

7. Chief U.S. Defense Liason Group, Indonesia 1
ATTN. Dispullahta TNI-AD
Kol. Suharminto
OMADP Box 2, APO San Fransisco 96356

8. Ka Dispullahta TNI-AD 1
JI.Veteran No.5
Jakarta Pusat, Indonesia

105

9. Asisten Operasi KASAD1
31. Veteran No.5
Jakarta Pusat, Indonesia

10. Asisten Personil KASAD1
A1. Veteran No.5
Jakarta Pusat, Indonesia

11. Direktur Perhubungan
JL.S.Parman
Jakarta Barat, Indonesia

12. Akademi Manajemnen Informatika. dan Komputer1
(AMIK) Bunda Mulia
31. AM Sangaji No.20
Jakarta Pusat, Indonesia

3. Partoyo1
31. Pendidikan I/K8
Cijantung, Jakarta Timur, Indonesia

106

